Home > Research > Publications & Outputs > Classification of vegetation type in Iraq using...

Links

Text available via DOI:

View graph of relations

Classification of vegetation type in Iraq using satellite-based phenological parameters

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Classification of vegetation type in Iraq using satellite-based phenological parameters. / Qader, Sarchil H.; Dash, Jadunandan; Atkinson, Peter Michael et al.
In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 01.2016, p. 414-424.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Qader, SH, Dash, J, Atkinson, PM & Rodriguez-Galiano, VF 2016, 'Classification of vegetation type in Iraq using satellite-based phenological parameters', IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 1, pp. 414-424. https://doi.org/10.1109/JSTARS.2015.2508639

APA

Qader, S. H., Dash, J., Atkinson, P. M., & Rodriguez-Galiano, V. F. (2016). Classification of vegetation type in Iraq using satellite-based phenological parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 414-424. https://doi.org/10.1109/JSTARS.2015.2508639

Vancouver

Qader SH, Dash J, Atkinson PM, Rodriguez-Galiano VF. Classification of vegetation type in Iraq using satellite-based phenological parameters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016 Jan;9(1):414-424. Epub 2016 Jan 6. doi: 10.1109/JSTARS.2015.2508639

Author

Qader, Sarchil H. ; Dash, Jadunandan ; Atkinson, Peter Michael et al. / Classification of vegetation type in Iraq using satellite-based phenological parameters. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016 ; Vol. 9, No. 1. pp. 414-424.

Bibtex

@article{5b5114255f69497f98b411bb8d3afd20,
title = "Classification of vegetation type in Iraq using satellite-based phenological parameters",
abstract = "Primary information of great importance to various grand challenges such as sustainable agricultural intensification, food insecurity, and climate change impacts, can be obtained indirectly from land cover monitoring. However, in arid-to-semiarid regions, such as Iraq, accurate discrimination of different vegetation types is challenging due to their similar spectral responses. Moreover, Iraq has been subjected to major disturbances, both natural and anthropogenic which have affected the distribution of land cover types through space and time. Reliable information about croplands and natural vegetation in such regions is generally scarce. This research aimed to develop a phenology-based classification approach using support vector machines for the assessment of space-time distribution of the dominant vegetation land cover (VLC) types in Iraq, particularly croplands, from 2002 to 2012. Thirteen successive years of 8-day composites of MODISNDVI data at a spatial resolution of 250 m were employed to estimate 11 phenological parameters. The classification methodology was assessed using reference samples taken from fine spatial resolution imagery and independent testing data obtained through fieldwork. Overall accuracies were generally >85 %, with relatively high Kappa coefficients (>0.86) across the classified land cover types. The predicted cropland class area and the Global MODIS land cover product were compared with ground statistical data at the governorate level, revealing a significantly larger coefficient of determination for the present phenology-based approach (R2 = 0.70 against R2 = 0.33 for MODIS, p<; 0.05). The resulting maps delimit for the first time, at a fine spatial resolution, the spatial and interannual variability in the dominant VLC classes across Iraq.",
author = "Qader, {Sarchil H.} and Jadunandan Dash and Atkinson, {Peter Michael} and Rodriguez-Galiano, {Victor F.}",
year = "2016",
month = jan,
doi = "10.1109/JSTARS.2015.2508639",
language = "English",
volume = "9",
pages = "414--424",
journal = "IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing",
issn = "1939-1404",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "1",

}

RIS

TY - JOUR

T1 - Classification of vegetation type in Iraq using satellite-based phenological parameters

AU - Qader, Sarchil H.

AU - Dash, Jadunandan

AU - Atkinson, Peter Michael

AU - Rodriguez-Galiano, Victor F.

PY - 2016/1

Y1 - 2016/1

N2 - Primary information of great importance to various grand challenges such as sustainable agricultural intensification, food insecurity, and climate change impacts, can be obtained indirectly from land cover monitoring. However, in arid-to-semiarid regions, such as Iraq, accurate discrimination of different vegetation types is challenging due to their similar spectral responses. Moreover, Iraq has been subjected to major disturbances, both natural and anthropogenic which have affected the distribution of land cover types through space and time. Reliable information about croplands and natural vegetation in such regions is generally scarce. This research aimed to develop a phenology-based classification approach using support vector machines for the assessment of space-time distribution of the dominant vegetation land cover (VLC) types in Iraq, particularly croplands, from 2002 to 2012. Thirteen successive years of 8-day composites of MODISNDVI data at a spatial resolution of 250 m were employed to estimate 11 phenological parameters. The classification methodology was assessed using reference samples taken from fine spatial resolution imagery and independent testing data obtained through fieldwork. Overall accuracies were generally >85 %, with relatively high Kappa coefficients (>0.86) across the classified land cover types. The predicted cropland class area and the Global MODIS land cover product were compared with ground statistical data at the governorate level, revealing a significantly larger coefficient of determination for the present phenology-based approach (R2 = 0.70 against R2 = 0.33 for MODIS, p<; 0.05). The resulting maps delimit for the first time, at a fine spatial resolution, the spatial and interannual variability in the dominant VLC classes across Iraq.

AB - Primary information of great importance to various grand challenges such as sustainable agricultural intensification, food insecurity, and climate change impacts, can be obtained indirectly from land cover monitoring. However, in arid-to-semiarid regions, such as Iraq, accurate discrimination of different vegetation types is challenging due to their similar spectral responses. Moreover, Iraq has been subjected to major disturbances, both natural and anthropogenic which have affected the distribution of land cover types through space and time. Reliable information about croplands and natural vegetation in such regions is generally scarce. This research aimed to develop a phenology-based classification approach using support vector machines for the assessment of space-time distribution of the dominant vegetation land cover (VLC) types in Iraq, particularly croplands, from 2002 to 2012. Thirteen successive years of 8-day composites of MODISNDVI data at a spatial resolution of 250 m were employed to estimate 11 phenological parameters. The classification methodology was assessed using reference samples taken from fine spatial resolution imagery and independent testing data obtained through fieldwork. Overall accuracies were generally >85 %, with relatively high Kappa coefficients (>0.86) across the classified land cover types. The predicted cropland class area and the Global MODIS land cover product were compared with ground statistical data at the governorate level, revealing a significantly larger coefficient of determination for the present phenology-based approach (R2 = 0.70 against R2 = 0.33 for MODIS, p<; 0.05). The resulting maps delimit for the first time, at a fine spatial resolution, the spatial and interannual variability in the dominant VLC classes across Iraq.

U2 - 10.1109/JSTARS.2015.2508639

DO - 10.1109/JSTARS.2015.2508639

M3 - Journal article

VL - 9

SP - 414

EP - 424

JO - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

JF - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

SN - 1939-1404

IS - 1

ER -