Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass
AU - Abdulkhani, Ali
AU - Zadeh, Zahra Echresh
AU - Bawa, Solomon Gajere
AU - Sun, Fubao
AU - Madadi, Meysam
AU - Zhang, Xueming
AU - Saha, Basudeb
PY - 2023/3/14
Y1 - 2023/3/14
N2 - Catalytic upgrading of fast pyrolysis bio-oil from two different types of lignocellulosic biomass was conducted using an H-ZSM-5 catalyst at different temperatures. A fixed-bed pyrolysis reactor has been used to perform in situ catalytic pyrolysis experiments at temperatures of 673, 773, and 873 K, where the catalyst (H-ZSM-5) has been mixed with wood chips or lignin, and the pyrolysis and upgrading processes have been performed simultaneously. The fractionation method has been employed to determine the chemical composition of bio-oil samples after catalytic pyrolysis experiments by gas chromatography with mass spectroscopy (GCMS). Other characterization techniques, e.g., water content, viscosity, elemental analysis, pH, and bomb calorimetry have been used, and the obtained results have been compared with the non-catalytic pyrolysis method. The highest bio-oil yield has been reported for bio-oil obtained from softwood at 873 K for both non-catalytic and catalytic bio-oil samples. The results indicate that the main effect of H-ZSM-5 has been observed on the amount of water and oxygen for all bio-oil samples at three different temperatures, where a significant reduction has been achieved compared to non-catalytic bio-oil samples. In addition, a significant viscosity reduction has been reported compared to non-catalytic bio-oil samples, and less viscous bio-oil samples have been produced by catalytic pyrolysis. Furthermore, the obtained results show that the heating values have been increased for upgraded bio-oil samples compared to non-catalytic bio-oil samples. The GCMS analysis of the catalytic bio-oil samples (H-ZSM-5) indicates that toluene and methanol have shown very similar behavior in extracting bio-oil samples in contrast to non-catalytic experiments. However, methanol performed better for extracting chemicals at a higher temperature.
AB - Catalytic upgrading of fast pyrolysis bio-oil from two different types of lignocellulosic biomass was conducted using an H-ZSM-5 catalyst at different temperatures. A fixed-bed pyrolysis reactor has been used to perform in situ catalytic pyrolysis experiments at temperatures of 673, 773, and 873 K, where the catalyst (H-ZSM-5) has been mixed with wood chips or lignin, and the pyrolysis and upgrading processes have been performed simultaneously. The fractionation method has been employed to determine the chemical composition of bio-oil samples after catalytic pyrolysis experiments by gas chromatography with mass spectroscopy (GCMS). Other characterization techniques, e.g., water content, viscosity, elemental analysis, pH, and bomb calorimetry have been used, and the obtained results have been compared with the non-catalytic pyrolysis method. The highest bio-oil yield has been reported for bio-oil obtained from softwood at 873 K for both non-catalytic and catalytic bio-oil samples. The results indicate that the main effect of H-ZSM-5 has been observed on the amount of water and oxygen for all bio-oil samples at three different temperatures, where a significant reduction has been achieved compared to non-catalytic bio-oil samples. In addition, a significant viscosity reduction has been reported compared to non-catalytic bio-oil samples, and less viscous bio-oil samples have been produced by catalytic pyrolysis. Furthermore, the obtained results show that the heating values have been increased for upgraded bio-oil samples compared to non-catalytic bio-oil samples. The GCMS analysis of the catalytic bio-oil samples (H-ZSM-5) indicates that toluene and methanol have shown very similar behavior in extracting bio-oil samples in contrast to non-catalytic experiments. However, methanol performed better for extracting chemicals at a higher temperature.
KW - Energy (miscellaneous)
KW - Energy Engineering and Power Technology
KW - Renewable Energy, Sustainability and the Environment
KW - Electrical and Electronic Engineering
KW - Control and Optimization
KW - Engineering (miscellaneous)
KW - Building and Construction
U2 - 10.3390/en16062715
DO - 10.3390/en16062715
M3 - Journal article
VL - 16
JO - Energies
JF - Energies
SN - 1996-1073
IS - 6
M1 - 2715
ER -