Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Comprehensive stiffness regulation on multi-section snake robot with considering the parasite motion and friction effects
AU - Ma, Nan
AU - Zhou, Haiqin
AU - Yuan, Jujie
AU - He, Guangping
PY - 2024/1/31
Y1 - 2024/1/31
N2 - Snake robots have been widely used in challenging environments, such as confined spaces. However, most existing snake robots with large length/diameter ratios have low stiffness, and this limits their accuracy and utility. To remedy this, a novel ‘macro-micro’ structure aided by a new comprehensive stiffness regulation strategy is proposed in this paper. This improves the positional accuracy when operating in deep and confined spaces. Subsequently, a comprehensive strategy for regulating the stiffness of the system is then developed, along with a kinetostatic model for error prediction. The internal friction, variation of cable stiffness as a function of tension, and their effects on the structural stiffness of the snake arm under different configurations have been incorporated into the model to increase the modelling accuracy. Finally, the proposed models were validated experimentally on a physical prototype and control system (error: 4.3% and 2.5% for straight and curved configurations, respectively). The improvement in stiffness due to the adjustment of the tension in the driving cables (i.e. average 183.4%) of the snake arm is shown.
AB - Snake robots have been widely used in challenging environments, such as confined spaces. However, most existing snake robots with large length/diameter ratios have low stiffness, and this limits their accuracy and utility. To remedy this, a novel ‘macro-micro’ structure aided by a new comprehensive stiffness regulation strategy is proposed in this paper. This improves the positional accuracy when operating in deep and confined spaces. Subsequently, a comprehensive strategy for regulating the stiffness of the system is then developed, along with a kinetostatic model for error prediction. The internal friction, variation of cable stiffness as a function of tension, and their effects on the structural stiffness of the snake arm under different configurations have been incorporated into the model to increase the modelling accuracy. Finally, the proposed models were validated experimentally on a physical prototype and control system (error: 4.3% and 2.5% for straight and curved configurations, respectively). The improvement in stiffness due to the adjustment of the tension in the driving cables (i.e. average 183.4%) of the snake arm is shown.
KW - snake robot
KW - stiffness regulation
KW - confined space operation
KW - kinetostatic model
U2 - 10.1088/1748-3190/ad0ffc
DO - 10.1088/1748-3190/ad0ffc
M3 - Journal article
VL - 19
JO - Bioinspiration and Biomimetics
JF - Bioinspiration and Biomimetics
SN - 1748-3182
IS - 1
M1 - 016008
ER -