Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences
AU - Jansen, C.
AU - Schollmeyer, G.
AU - Augustin, T.
PY - 2018/7/31
Y1 - 2018/7/31
N2 - We introduce three different approaches for decision making under uncertainty if (I) there is only partial (both cardinally and ordinally scaled) information on an agent's preferences and (II) the uncertainty about the states of nature is described by a credal set (or some other imprecise probabilistic model). Particularly, situation (I) is modeled by a pair of binary relations, one specifying the partial rank order of the alternatives and the other modeling partial information on the strength of preference. Our first approach relies on decision criteria constructing complete rankings of the available acts that are based on generalized expectation intervals. Subsequently, we introduce different concepts of global admissibility that construct partial orders between the available acts by comparing them all simultaneously. Finally, we define criteria induced by suitable binary relations on the set of acts and, therefore, can be understood as concepts of local admissibility. For certain criteria, we provide linear programming based algorithms for checking optimality/admissibility of acts. Additionally, the paper includes a discussion of a prototypical situation by means of a toy example.
AB - We introduce three different approaches for decision making under uncertainty if (I) there is only partial (both cardinally and ordinally scaled) information on an agent's preferences and (II) the uncertainty about the states of nature is described by a credal set (or some other imprecise probabilistic model). Particularly, situation (I) is modeled by a pair of binary relations, one specifying the partial rank order of the alternatives and the other modeling partial information on the strength of preference. Our first approach relies on decision criteria constructing complete rankings of the available acts that are based on generalized expectation intervals. Subsequently, we introduce different concepts of global admissibility that construct partial orders between the available acts by comparing them all simultaneously. Finally, we define criteria induced by suitable binary relations on the set of acts and, therefore, can be understood as concepts of local admissibility. For certain criteria, we provide linear programming based algorithms for checking optimality/admissibility of acts. Additionally, the paper includes a discussion of a prototypical situation by means of a toy example.
U2 - 10.1016/j.ijar.2018.04.011
DO - 10.1016/j.ijar.2018.04.011
M3 - Journal article
VL - 98
SP - 112
EP - 131
JO - International Journal of Approximate Reasoning
JF - International Journal of Approximate Reasoning
SN - 0888-613X
ER -