Accepted author manuscript, 3.94 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Constraining the exhumation history of the northwestern margin of Tibet with a comparison to the adjacent Pamir
AU - Zhang, Shijie
AU - Najman, Yani
AU - Hu, Xiumian
AU - Carter, Andrew
AU - Mark, Chris
AU - Xue, Weiwei
PY - 2024/5/6
Y1 - 2024/5/6
N2 - Regional variations in the evolution of the Tibetan Plateau have important implications for our understanding of crustal deformation processes. There have been few studies of the evolution of the NW margin of the plateau and its transition to the Pamir Mountains to the west. We focus on this region with a multi-technique detrital study of two sedimentary sections in the Tarim Basin. Our provenance data show that an appreciable component of the detrital material in the sedimentary sections was derived from the Songpan-Ganzi–Tianshuihai composite terrane, with some contribution from the Karakoram and/or West Qiangtang. Given the proximity of the West Kunlun terrane to the sedimentary sections under study, and its long history of exhumation, this terrane in all likelihood also contributed to the studied successions. Our thermochronological data record phases of exhumation in the hinterland in the Triassic, Early Cretaceous and Oligo-Miocene. Similar to the Pamir Mountains, the Triassic and Oligo-Miocene periods of exhumation are attributed to the Cimmerian and Himalayan orogenies, respectively. The Early Cretaceous signal may reflect the distal effects of the Lhasa–Qiangtang collision. Coevality with deformation in the Pamir Mountains suggests a coupled geodynamic system, with retro-arc deformation associated with Neotethyan subduction in the west and terrane accretion in the east. Supplementary material: Detailed analytical method, sample information, petrographic, geochronological and low-temperature thermochronological data are available at https://doi.org/10.6084/m9.figshare.c.7040686
AB - Regional variations in the evolution of the Tibetan Plateau have important implications for our understanding of crustal deformation processes. There have been few studies of the evolution of the NW margin of the plateau and its transition to the Pamir Mountains to the west. We focus on this region with a multi-technique detrital study of two sedimentary sections in the Tarim Basin. Our provenance data show that an appreciable component of the detrital material in the sedimentary sections was derived from the Songpan-Ganzi–Tianshuihai composite terrane, with some contribution from the Karakoram and/or West Qiangtang. Given the proximity of the West Kunlun terrane to the sedimentary sections under study, and its long history of exhumation, this terrane in all likelihood also contributed to the studied successions. Our thermochronological data record phases of exhumation in the hinterland in the Triassic, Early Cretaceous and Oligo-Miocene. Similar to the Pamir Mountains, the Triassic and Oligo-Miocene periods of exhumation are attributed to the Cimmerian and Himalayan orogenies, respectively. The Early Cretaceous signal may reflect the distal effects of the Lhasa–Qiangtang collision. Coevality with deformation in the Pamir Mountains suggests a coupled geodynamic system, with retro-arc deformation associated with Neotethyan subduction in the west and terrane accretion in the east. Supplementary material: Detailed analytical method, sample information, petrographic, geochronological and low-temperature thermochronological data are available at https://doi.org/10.6084/m9.figshare.c.7040686
U2 - 10.1144/jgs2023-198
DO - 10.1144/jgs2023-198
M3 - Journal article
VL - 181
JO - Journal of the Geological Society
JF - Journal of the Geological Society
SN - 0016-7649
IS - 3
M1 - jgs2023-198
ER -