By informed design novel high-surface area, low volume flow cells were designed for high-throughput detection of chemical and electrochemical dissolution products of energy storage materials found in zinc-air batteries, including current collectors and bifunctional catalysts. Novel flow cells were fabricated by stereolithography to realise complex flow channels which allowed efficient transport of dissolution products from the working electrode. Due to appropriate construction material selection, the 3Dprinted flow cells could withstand concentrated alkaline solutions . Routine analysis in 1 M KOH electrolytes were realised by adapting an ICP-OES to withstand harsh alkaline conditions, providing real-time detection limits below 1 ng s-1 cm-2. Positive electrode current collector candidates for alkaline zinc-air batteries were investigated for stability in 1 M KOH as function of potential region and galvanostatic charging currents within relevant for practical energy storage applications. A range of nickelsubstituted cobalt oxides NixCo3-xO4 bifunctional electrocatalysts for zinc-air batteries were synthesised and characterised by PXRD, SEM and cyclic voltammetry. With online dissolution analysis, the stability of the materials were assessed as a function of potential and pH. Nickel substitution was found to affect the onset of cobalt dissolution,
and a correlation between nickel doping, dissolution magnitude of cobalt and catalytic activity towards the oxygen reduction reaction and oxygen evolution reactions was found.