Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Contribution of plant photosynthate to soil respiration and dissolved organic carbon in a naturally recolonising cutover peatland
AU - Trinder, Clare J.
AU - Artz, Rebekka R. E.
AU - Johnson, David
PY - 2008/7/31
Y1 - 2008/7/31
N2 - The aim of this study was to investigate how three vascular plant species (Calluna vulgaris, Eriophorum angustifolium and Eriophorum vaginatum) colonising an abandoned cutover peatland affect fluxes of recent photosynthate to dissolved organic carbon (DOC), soil and plant respiration and shoot biomass. We used in situ 13CO2 pulse labelling to trace carbon (C) throughout a 65 day pulse chase period. Between 16 and 35% of the pulse of 13C remained in shoot biomass after 65 days with significant differences between C. vulgaris and E. angustifolium (P = 0.009) and between C. vulgaris and E. vaginatum (P = 0.04). A maximum of 29% was detected in DOC beneath labelled plants and losses of 13C from peat respiration never exceeded 0.16% of the original pulse, showing that little newly fixed C was allocated to this pool. There were no significant differences between the different plant species with respect to 13C recovered from DOC or via peat respiration. More C was lost via shoot respiration; although amounts varied between the three plant species, with 4.94–27.33% of the 13C pulse respired by the end of the experiment. Significant differences in 13C recovered from shoot respiration were found between C. vulgaris and E. angustifolium (P = 0.001) and between E. angustifolium and E. vaginatum (P = 0.032). Analysis of δ13C of microbial biomass indicated that recently assimilated C was allocated to this pool within 1 day of pulse labelling but there were no significant differences in the 13C enrichment of the microbial biomass associated with the different plant species. The data suggest that peat respiration represents a small flux of recent assimilate compared to other fluxes and pools and that different vascular plant species show considerable variation in the quantities and dynamics of C allocated to DOC.
AB - The aim of this study was to investigate how three vascular plant species (Calluna vulgaris, Eriophorum angustifolium and Eriophorum vaginatum) colonising an abandoned cutover peatland affect fluxes of recent photosynthate to dissolved organic carbon (DOC), soil and plant respiration and shoot biomass. We used in situ 13CO2 pulse labelling to trace carbon (C) throughout a 65 day pulse chase period. Between 16 and 35% of the pulse of 13C remained in shoot biomass after 65 days with significant differences between C. vulgaris and E. angustifolium (P = 0.009) and between C. vulgaris and E. vaginatum (P = 0.04). A maximum of 29% was detected in DOC beneath labelled plants and losses of 13C from peat respiration never exceeded 0.16% of the original pulse, showing that little newly fixed C was allocated to this pool. There were no significant differences between the different plant species with respect to 13C recovered from DOC or via peat respiration. More C was lost via shoot respiration; although amounts varied between the three plant species, with 4.94–27.33% of the 13C pulse respired by the end of the experiment. Significant differences in 13C recovered from shoot respiration were found between C. vulgaris and E. angustifolium (P = 0.001) and between E. angustifolium and E. vaginatum (P = 0.032). Analysis of δ13C of microbial biomass indicated that recently assimilated C was allocated to this pool within 1 day of pulse labelling but there were no significant differences in the 13C enrichment of the microbial biomass associated with the different plant species. The data suggest that peat respiration represents a small flux of recent assimilate compared to other fluxes and pools and that different vascular plant species show considerable variation in the quantities and dynamics of C allocated to DOC.
KW - (13)C
KW - Calluna vulgaris, CO(2) efflux
KW - cutover peatland
KW - DOC
KW - Eriophorum angustifolium
KW - Eriophorum vaginatum
KW - in situ
KW - pulse labelling
KW - microbial biomass
KW - restoration
U2 - 10.1016/j.soilbio.2008.01.016
DO - 10.1016/j.soilbio.2008.01.016
M3 - Journal article
VL - 40
SP - 1622
EP - 1628
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
SN - 0038-0717
IS - 7
ER -