Home > Research > Publications & Outputs > Contribution to the discussion of "Longitudinal...
View graph of relations

Contribution to the discussion of "Longitudinal data with dropout: objectives, assumptions and a proposal" by P.J. Diggle, D. Farewell and R. Henderson

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Contribution to the discussion of "Longitudinal data with dropout: objectives, assumptions and a proposal" by P.J. Diggle, D. Farewell and R. Henderson. / Solis-Trapala, Ivonne L.
In: Journal of the Royal Statistical Society: Series C (Applied Statistics), Vol. 56, No. 5, 11.2007, p. 544.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Solis-Trapala IL. Contribution to the discussion of "Longitudinal data with dropout: objectives, assumptions and a proposal" by P.J. Diggle, D. Farewell and R. Henderson. Journal of the Royal Statistical Society: Series C (Applied Statistics). 2007 Nov;56(5):544. doi: 10.1111/j.1467-9876.2007.00590.x

Author

Solis-Trapala, Ivonne L. / Contribution to the discussion of "Longitudinal data with dropout: objectives, assumptions and a proposal" by P.J. Diggle, D. Farewell and R. Henderson. In: Journal of the Royal Statistical Society: Series C (Applied Statistics). 2007 ; Vol. 56, No. 5. pp. 544.

Bibtex

@article{22893b6d50824835a3df868ef2565aa1,
title = "Contribution to the discussion of {"}Longitudinal data with dropout: objectives, assumptions and a proposal{"} by P.J. Diggle, D. Farewell and R. Henderson",
abstract = "The problem of analysing longitudinal data that are complicated by possibly informative drop-out has received considerable attention in the statistical literature. Most researchers have concentrated on either methodology or application, but we begin this paper by arguing that more attention could be given to study objectives and to the relevant targets for inference. Next we summarize a variety of approaches that have been suggested for dealing with drop-out. A long-standing concern in this subject area is that all methods require untestable assumptions. We discuss circumstances in which we are willing to make such assumptions and we propose a new and computationally efficient modelling and analysis procedure for these situations. We assume a dynamic linear model for the expected increments of a constructed variable, under which subject-specific random effects follow a martingale process in the absence of drop-out. Informal diagnostic procedures to assess the tenability of the assumption are proposed. The paper is completed by simulations and a comparison of our method and several alternatives in the analysis of data from a trial into the treatment of schizophrenia, in which approximately 50% of recruited subjects dropped out before the final scheduled measurement time.",
keywords = "Additive intensity model • Counterfactuals • Joint modelling • Martingales • Missing data",
author = "Solis-Trapala, {Ivonne L.}",
year = "2007",
month = nov,
doi = "10.1111/j.1467-9876.2007.00590.x",
language = "English",
volume = "56",
pages = "544",
journal = "Journal of the Royal Statistical Society: Series C (Applied Statistics)",
issn = "0035-9254",
publisher = "Wiley-Blackwell",
number = "5",

}

RIS

TY - JOUR

T1 - Contribution to the discussion of "Longitudinal data with dropout: objectives, assumptions and a proposal" by P.J. Diggle, D. Farewell and R. Henderson

AU - Solis-Trapala, Ivonne L.

PY - 2007/11

Y1 - 2007/11

N2 - The problem of analysing longitudinal data that are complicated by possibly informative drop-out has received considerable attention in the statistical literature. Most researchers have concentrated on either methodology or application, but we begin this paper by arguing that more attention could be given to study objectives and to the relevant targets for inference. Next we summarize a variety of approaches that have been suggested for dealing with drop-out. A long-standing concern in this subject area is that all methods require untestable assumptions. We discuss circumstances in which we are willing to make such assumptions and we propose a new and computationally efficient modelling and analysis procedure for these situations. We assume a dynamic linear model for the expected increments of a constructed variable, under which subject-specific random effects follow a martingale process in the absence of drop-out. Informal diagnostic procedures to assess the tenability of the assumption are proposed. The paper is completed by simulations and a comparison of our method and several alternatives in the analysis of data from a trial into the treatment of schizophrenia, in which approximately 50% of recruited subjects dropped out before the final scheduled measurement time.

AB - The problem of analysing longitudinal data that are complicated by possibly informative drop-out has received considerable attention in the statistical literature. Most researchers have concentrated on either methodology or application, but we begin this paper by arguing that more attention could be given to study objectives and to the relevant targets for inference. Next we summarize a variety of approaches that have been suggested for dealing with drop-out. A long-standing concern in this subject area is that all methods require untestable assumptions. We discuss circumstances in which we are willing to make such assumptions and we propose a new and computationally efficient modelling and analysis procedure for these situations. We assume a dynamic linear model for the expected increments of a constructed variable, under which subject-specific random effects follow a martingale process in the absence of drop-out. Informal diagnostic procedures to assess the tenability of the assumption are proposed. The paper is completed by simulations and a comparison of our method and several alternatives in the analysis of data from a trial into the treatment of schizophrenia, in which approximately 50% of recruited subjects dropped out before the final scheduled measurement time.

KW - Additive intensity model • Counterfactuals • Joint modelling • Martingales • Missing data

U2 - 10.1111/j.1467-9876.2007.00590.x

DO - 10.1111/j.1467-9876.2007.00590.x

M3 - Journal article

VL - 56

SP - 544

JO - Journal of the Royal Statistical Society: Series C (Applied Statistics)

JF - Journal of the Royal Statistical Society: Series C (Applied Statistics)

SN - 0035-9254

IS - 5

ER -