Rights statement: This is the author’s version of a work that was accepted for publication in European Journal of Operational Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Journal of Operational Research, 301, 1, 2022 DOI: 10.1016/j.ejor.2021.09.037
Accepted author manuscript, 1.5 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping
AU - Raeesi, Ramin
AU - Zografos, K. G.
N1 - This is the author’s version of a work that was accepted for publication in European Journal of Operational Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Journal of Operational Research, 301, 1, 2022 DOI: 10.1016/j.ejor.2021.09.037
PY - 2022/8/31
Y1 - 2022/8/31
N2 - A primary challenge in goods distribution using Electric Commercial Vehicles (ECVs) pertains to tackling their limited driving range. This paper proposes a multi-faceted approach towards increasing the driving range of ECVs by coordinating the options of: (i) intra-route recharging at an intermediate Recharging Station (RS), with (ii) synchronised en-route battery swapping services performed by Battery Swapping Vans (BSVs) at a pre-planned rendezvous time and space. We introduce and solve a variant corresponding to an Electric Vehicle Routing Problem with Time Windows, RSs and Synchronised Mobile Battery Swapping (EVRPTW-RS-SMBS). In the proposed model, route planning is carried out synchronously for two interdependent fleets, i.e., ECVs and BSVs, which work in tandem to complete the delivery tasks. To address methodological complications arising from the simultaneous consideration of intra-route recharging at RSs and the synchronised battery swapping on-the-fly, the paper develops a pre-optimisation procedure based on a Non-Dominated Path Identification (NDPI) algorithm that is used in deriving a significantly strengthened path-based formulation of the problem, and an efficient dynamic programming based heuristic algorithm. To gain practical insights on the economic and environmental added value and viability of the proposed logistics model, we compare different scenarios for goods distribution using ECVs in urban and regional levels in London and Southeast England, respectively. A set of numerical experiments are further performed to demonstrate the efficiency of the proposed algorithms. Our results indicate significant cost and emissions savings and an opportunity for going beyond last mile local deliveries using ECVs with the proposed logistics model.
AB - A primary challenge in goods distribution using Electric Commercial Vehicles (ECVs) pertains to tackling their limited driving range. This paper proposes a multi-faceted approach towards increasing the driving range of ECVs by coordinating the options of: (i) intra-route recharging at an intermediate Recharging Station (RS), with (ii) synchronised en-route battery swapping services performed by Battery Swapping Vans (BSVs) at a pre-planned rendezvous time and space. We introduce and solve a variant corresponding to an Electric Vehicle Routing Problem with Time Windows, RSs and Synchronised Mobile Battery Swapping (EVRPTW-RS-SMBS). In the proposed model, route planning is carried out synchronously for two interdependent fleets, i.e., ECVs and BSVs, which work in tandem to complete the delivery tasks. To address methodological complications arising from the simultaneous consideration of intra-route recharging at RSs and the synchronised battery swapping on-the-fly, the paper develops a pre-optimisation procedure based on a Non-Dominated Path Identification (NDPI) algorithm that is used in deriving a significantly strengthened path-based formulation of the problem, and an efficient dynamic programming based heuristic algorithm. To gain practical insights on the economic and environmental added value and viability of the proposed logistics model, we compare different scenarios for goods distribution using ECVs in urban and regional levels in London and Southeast England, respectively. A set of numerical experiments are further performed to demonstrate the efficiency of the proposed algorithms. Our results indicate significant cost and emissions savings and an opportunity for going beyond last mile local deliveries using ECVs with the proposed logistics model.
KW - Routing
KW - Electric vehicles
KW - Recharging
KW - Battery swapping
KW - Scheduling and synchronisation
U2 - 10.1016/j.ejor.2021.09.037
DO - 10.1016/j.ejor.2021.09.037
M3 - Journal article
VL - 301
SP - 82
EP - 109
JO - European Journal of Operational Research
JF - European Journal of Operational Research
SN - 0377-2217
IS - 1
ER -