Rights statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Nano Material, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsanm.1c04031
Accepted author manuscript, 1.56 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agents
AU - Cruces, E.
AU - Arancibia-Miranda, N.
AU - Manquián-Cerda, K.
AU - Perreault, F.
AU - Bolan, N.
AU - Azócar, M.I.
AU - Cubillos, V.
AU - Montory, J.
AU - Rubio, M.A.
AU - Sarkar, B.
N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Nano Material, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsanm.1c04031
PY - 2022/1/31
Y1 - 2022/1/31
N2 - This study aims to understand how properties of modified aluminosilicate geomaterials influence the antibacterial performance of nanocomposites when prepared with bimetallic nanoparticles (NPs). Copper/silver (Cu/Ag) bimetallic NPs were synthesized in the presence of imogolite (Imo), montmorillonite (Mtt), or zeolite (Zeo) using a simple one-pot method and characterized for their crystal phases, micro- and nanomorphologies, particle size, elemental composition, and electrophoretic mobility. The antibacterial activity was evaluated through minimum inhibition concentration assays of NPs and nanocomposites for Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus bacteria. Deposition of metallic Cu0, Ag0, and cuprite NPs was confirmed in Zeo_Cu/Ag and Imo_Cu/Ag nanocomposites, whereas only Cu0 and Ag0 were identified in Mtt_Cu/Ag. The bimetallic NPs were more uniformly distributed on Zeo and Mtt than Imo. Particle sizes of 28.1 ± 5.0, 9.4 ± 2.3, 10.1 ± 1.7, and 12 ± 1.3 nm were determined for Cu/Ag NPs, Imo_Cu/Ag, Mtt_Cu/Ag, and Zeo_Cu/Ag, respectively. The release rate of Cu and Ag ions from Zeo_Cu/Ag was higher than those of pristine Cu/Ag NPs and the other two nanocomposites. The antimicrobial action of bimetallic NPs and nanocomposites was dose-dependent in relation to the concentration of concerned materials and their stability in the medium. The physicochemical characteristics of Zeo resulted in a homogeneous distribution and low oxidation and agglomeration of Cu/Ag NPs, consequently increasing the antibacterial activity. Results of this study highlight the benefits of using a geomaterial support to achieve high antibacterial activity of bimetallic NPs, which could help reduce the consumption of pure Cu/Ag salts in NP-based antibacterial applications.
AB - This study aims to understand how properties of modified aluminosilicate geomaterials influence the antibacterial performance of nanocomposites when prepared with bimetallic nanoparticles (NPs). Copper/silver (Cu/Ag) bimetallic NPs were synthesized in the presence of imogolite (Imo), montmorillonite (Mtt), or zeolite (Zeo) using a simple one-pot method and characterized for their crystal phases, micro- and nanomorphologies, particle size, elemental composition, and electrophoretic mobility. The antibacterial activity was evaluated through minimum inhibition concentration assays of NPs and nanocomposites for Gram (-) Escherichia coli and Gram (+) Staphylococcus aureus bacteria. Deposition of metallic Cu0, Ag0, and cuprite NPs was confirmed in Zeo_Cu/Ag and Imo_Cu/Ag nanocomposites, whereas only Cu0 and Ag0 were identified in Mtt_Cu/Ag. The bimetallic NPs were more uniformly distributed on Zeo and Mtt than Imo. Particle sizes of 28.1 ± 5.0, 9.4 ± 2.3, 10.1 ± 1.7, and 12 ± 1.3 nm were determined for Cu/Ag NPs, Imo_Cu/Ag, Mtt_Cu/Ag, and Zeo_Cu/Ag, respectively. The release rate of Cu and Ag ions from Zeo_Cu/Ag was higher than those of pristine Cu/Ag NPs and the other two nanocomposites. The antimicrobial action of bimetallic NPs and nanocomposites was dose-dependent in relation to the concentration of concerned materials and their stability in the medium. The physicochemical characteristics of Zeo resulted in a homogeneous distribution and low oxidation and agglomeration of Cu/Ag NPs, consequently increasing the antibacterial activity. Results of this study highlight the benefits of using a geomaterial support to achieve high antibacterial activity of bimetallic NPs, which could help reduce the consumption of pure Cu/Ag salts in NP-based antibacterial applications.
KW - antibacterial activity
KW - Cu/Ag bimetallic nanoparticles
KW - imogolite
KW - montmorillonite
KW - supported nanoparticles
KW - zeolite
KW - Aluminosilicates
KW - Clay minerals
KW - Electrophoretic mobility
KW - Escherichia coli
KW - Nanocomposites
KW - Nanoparticles
KW - Particle size
KW - Anti-bacterial activity
KW - Antibacterial performance
KW - Bimetallic nanoparticles
KW - Cu/ag bimetallic nanoparticle
KW - Geomaterials
KW - Imogolite
KW - Particles sizes
KW - Property
KW - Supported nanoparticles
KW - Synthesised
KW - Zeolites
U2 - 10.1021/acsanm.1c04031
DO - 10.1021/acsanm.1c04031
M3 - Journal article
VL - 5
SP - 1472
EP - 1483
JO - ACS Applied Nano Materials
JF - ACS Applied Nano Materials
IS - 1
ER -