Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Corrigendum : New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots (vol 188, pg 210, 2010)
AU - Grelet, G-A
AU - Johnson, D.
AU - Vralstad, T.
AU - Alexander, I. J.
AU - Anderson, I. C.
PY - 2011/1/31
Y1 - 2011/1/31
N2 - •Fungi in the Rhizoscyphus ericae aggregate have been recovered from the roots of co-occurring ericaceous shrubs and ectomycorrhizal trees. However, to date, there is no evidence that the same individual genotypes colonize both hosts, and no information on the extent of the mycelial networks that might form.•Using spatially explicit core sampling, we isolated fungi from neighbouring Pinus sylvestris (ectomycorrhizal) and Vaccinium vitis-idaea (ericoid mycorrhizal) roots and applied intersimple sequence repeat (ISSR) typing to assess the occurrence and extent of shared genets.•Most isolates were identified as Meliniomyces variabilis, and isolates with identical ISSR profiles were obtained from neighbouring ericoid and ectomycorrhizal roots on a number of occasions. However, genet sizes were small (< 13 cm), and several genets were found in a single soil core. Genetic relatedness was independent of spatial separation at the scales investigated (< 43 m) and M. variabilis populations from sites 20 km apart were genetically indistinguishable.•We conclude that individual genets of M. variabilis can simultaneously colonize Scots pine and Vaccinium roots, but there is no evidence for the formation of large mycelial networks. Our data also suggest significant genotypic overlap between widely separated populations of this ubiquitous root-associated fungus.
AB - •Fungi in the Rhizoscyphus ericae aggregate have been recovered from the roots of co-occurring ericaceous shrubs and ectomycorrhizal trees. However, to date, there is no evidence that the same individual genotypes colonize both hosts, and no information on the extent of the mycelial networks that might form.•Using spatially explicit core sampling, we isolated fungi from neighbouring Pinus sylvestris (ectomycorrhizal) and Vaccinium vitis-idaea (ericoid mycorrhizal) roots and applied intersimple sequence repeat (ISSR) typing to assess the occurrence and extent of shared genets.•Most isolates were identified as Meliniomyces variabilis, and isolates with identical ISSR profiles were obtained from neighbouring ericoid and ectomycorrhizal roots on a number of occasions. However, genet sizes were small (< 13 cm), and several genets were found in a single soil core. Genetic relatedness was independent of spatial separation at the scales investigated (< 43 m) and M. variabilis populations from sites 20 km apart were genetically indistinguishable.•We conclude that individual genets of M. variabilis can simultaneously colonize Scots pine and Vaccinium roots, but there is no evidence for the formation of large mycelial networks. Our data also suggest significant genotypic overlap between widely separated populations of this ubiquitous root-associated fungus.
KW - ericoid mycorrhizas
KW - fungal genets
KW - fungal networks
KW - Meliniomyces
KW - Rhizoscyphus ericae aggregate
U2 - 10.1111/j.1469-8137.2010.03560.x
DO - 10.1111/j.1469-8137.2010.03560.x
M3 - Journal article
VL - 189
SP - 643
EP - 643
JO - New Phytologist
JF - New Phytologist
SN - 0028-646X
IS - 2
ER -