Home > Research > Publications & Outputs > COVID-19 Outbreak Prediction with Machine Learning


Text available via DOI:

View graph of relations

COVID-19 Outbreak Prediction with Machine Learning

Research output: Contribution to Journal/MagazineJournal articlepeer-review

  • Sina F. Ardabili
  • Amir Mosavi
  • Pedram Ghamisi
  • Filip Ferdinand
  • Annamaria R. Varkonyi-Koczy
  • Uwe Reuter
  • Timon Rabczuk
  • Peter Atkinson
Article number249
<mark>Journal publication date</mark>1/10/2020
Issue number10
Number of pages36
Publication StatusPublished
<mark>Original language</mark>English


Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and these models are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models need to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to susceptible–infected–recovered (SIR) and susceptible-exposed-infectious-removed (SEIR) models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP; and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior across nations, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. This paper further suggests that a genuine novelty in outbreak prediction can be realized by integrating machine learning and SEIR models.