Home > Research > Publications & Outputs > Crop bioaccumulation and human exposure of perf...

Electronic data

  • Environment International_106_Liu

    Rights statement: This is the author’s version of a work that was accepted for publication in Environment International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environment International, 106, 2017 DOI: 10.1016/j.envint.2017.05.014

    Accepted author manuscript, 3.94 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China

Research output: Contribution to journalJournal articlepeer-review

Published

Standard

Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. / Liu, Zhaoyang; Lu, Yonglong; Shi, Yajuan; Wang, Pei; Jones, Kevin Christopher; Sweetman, Andrew James; Johnson, Andrew C.; Zhang, Meng Le; Zhou, Yunqiao ; Su, Chao; Sarvajayakesavalu, Surianarayanan; Khan, Kifayatullah.

In: Environment International, Vol. 106, 09.2017, p. 37-47.

Research output: Contribution to journalJournal articlepeer-review

Harvard

Liu, Z, Lu, Y, Shi, Y, Wang, P, Jones, KC, Sweetman, AJ, Johnson, AC, Zhang, ML, Zhou, Y, Su, C, Sarvajayakesavalu, S & Khan, K 2017, 'Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China', Environment International, vol. 106, pp. 37-47. https://doi.org/10.1016/j.envint.2017.05.014

APA

Liu, Z., Lu, Y., Shi, Y., Wang, P., Jones, K. C., Sweetman, A. J., Johnson, A. C., Zhang, M. L., Zhou, Y., Su, C., Sarvajayakesavalu, S., & Khan, K. (2017). Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. Environment International, 106, 37-47. https://doi.org/10.1016/j.envint.2017.05.014

Vancouver

Author

Liu, Zhaoyang ; Lu, Yonglong ; Shi, Yajuan ; Wang, Pei ; Jones, Kevin Christopher ; Sweetman, Andrew James ; Johnson, Andrew C. ; Zhang, Meng Le ; Zhou, Yunqiao ; Su, Chao ; Sarvajayakesavalu, Surianarayanan ; Khan, Kifayatullah. / Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China. In: Environment International. 2017 ; Vol. 106. pp. 37-47.

Bibtex

@article{3654dd6914574e0496eac7b6fd7141e0,
title = "Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China",
abstract = "Significant quantities of perfluoroalkyl acids (PFAAs) are released to the environment from fluorochemical manufacturing processes through wastewater discharge and air emission in China, which may lead to human exposure and health risks through crop bioaccumulation from PFAAs-contaminated soil and irrigation water. This paper systematically studied the distribution and transport of PFAAs in agricultural soil, irrigation water and precipitation, followed by crop bioaccumulation and finally human exposure of PFAAs within a 10 km radius around a mega-fluorochemical industrial park (FIP). Hotspots of contamination by PFAAs were found near the FIP and downstream of the effluent discharge point with the maximum concentrations of 641 ng/g in agricultural soil, 480 ng/g in wheat grain, 58.8 ng/g in maize grain and 4,862 ng/L in precipitation. As the distance increased from the FIP, PFAAs concentrations in all media showed a sharp initial decrease followed by a moderate decline. Elevated PFAA concentrations in soil and grains were still present within a radius of 10 km of the FIP. The soil contamination was associated with the presence of PFAAs in irrigation water and precipitation, and perfluorooctanoic acid (PFOA) was the dominant PFAA component in soil. However, due to bioaccumulation preference, short-chain perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), became the major PFAA contaminants in grains of wheat and maize. The bioaccumulation factors (BAFs) for both grains showed a decrease with increasing chain length of PFAAs (approximately 0.5 log decrease per CF2 group). Compared to maize grain, wheat grain showed higher BAFs, possibly related to its higher protein content. The PFCA (C4-C8) concentrations (on a log10 basis) in agricultural soil and grain were found to show a linear positive correlation. Local human exposure of PFOA via the consumption of contaminated grains represents a health risk for local residents, especially for toddlers and children.",
keywords = "PFAAs, Agricultural soil, Precipitation, Crop bioaccumulation, Human exposure",
author = "Zhaoyang Liu and Yonglong Lu and Yajuan Shi and Pei Wang and Jones, {Kevin Christopher} and Sweetman, {Andrew James} and Johnson, {Andrew C.} and Zhang, {Meng Le} and Yunqiao Zhou and Chao Su and Surianarayanan Sarvajayakesavalu and Kifayatullah Khan",
note = "This is the author{\textquoteright}s version of a work that was accepted for publication in Environment International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environment International, 106, 2017 DOI: 10.1016/j.envint.2017.05.014",
year = "2017",
month = sep,
doi = "10.1016/j.envint.2017.05.014",
language = "English",
volume = "106",
pages = "37--47",
journal = "Environment International",
issn = "0160-4120",
publisher = "Elsevier Ltd",

}

RIS

TY - JOUR

T1 - Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China

AU - Liu, Zhaoyang

AU - Lu, Yonglong

AU - Shi, Yajuan

AU - Wang, Pei

AU - Jones, Kevin Christopher

AU - Sweetman, Andrew James

AU - Johnson, Andrew C.

AU - Zhang, Meng Le

AU - Zhou, Yunqiao

AU - Su, Chao

AU - Sarvajayakesavalu, Surianarayanan

AU - Khan, Kifayatullah

N1 - This is the author’s version of a work that was accepted for publication in Environment International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environment International, 106, 2017 DOI: 10.1016/j.envint.2017.05.014

PY - 2017/9

Y1 - 2017/9

N2 - Significant quantities of perfluoroalkyl acids (PFAAs) are released to the environment from fluorochemical manufacturing processes through wastewater discharge and air emission in China, which may lead to human exposure and health risks through crop bioaccumulation from PFAAs-contaminated soil and irrigation water. This paper systematically studied the distribution and transport of PFAAs in agricultural soil, irrigation water and precipitation, followed by crop bioaccumulation and finally human exposure of PFAAs within a 10 km radius around a mega-fluorochemical industrial park (FIP). Hotspots of contamination by PFAAs were found near the FIP and downstream of the effluent discharge point with the maximum concentrations of 641 ng/g in agricultural soil, 480 ng/g in wheat grain, 58.8 ng/g in maize grain and 4,862 ng/L in precipitation. As the distance increased from the FIP, PFAAs concentrations in all media showed a sharp initial decrease followed by a moderate decline. Elevated PFAA concentrations in soil and grains were still present within a radius of 10 km of the FIP. The soil contamination was associated with the presence of PFAAs in irrigation water and precipitation, and perfluorooctanoic acid (PFOA) was the dominant PFAA component in soil. However, due to bioaccumulation preference, short-chain perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), became the major PFAA contaminants in grains of wheat and maize. The bioaccumulation factors (BAFs) for both grains showed a decrease with increasing chain length of PFAAs (approximately 0.5 log decrease per CF2 group). Compared to maize grain, wheat grain showed higher BAFs, possibly related to its higher protein content. The PFCA (C4-C8) concentrations (on a log10 basis) in agricultural soil and grain were found to show a linear positive correlation. Local human exposure of PFOA via the consumption of contaminated grains represents a health risk for local residents, especially for toddlers and children.

AB - Significant quantities of perfluoroalkyl acids (PFAAs) are released to the environment from fluorochemical manufacturing processes through wastewater discharge and air emission in China, which may lead to human exposure and health risks through crop bioaccumulation from PFAAs-contaminated soil and irrigation water. This paper systematically studied the distribution and transport of PFAAs in agricultural soil, irrigation water and precipitation, followed by crop bioaccumulation and finally human exposure of PFAAs within a 10 km radius around a mega-fluorochemical industrial park (FIP). Hotspots of contamination by PFAAs were found near the FIP and downstream of the effluent discharge point with the maximum concentrations of 641 ng/g in agricultural soil, 480 ng/g in wheat grain, 58.8 ng/g in maize grain and 4,862 ng/L in precipitation. As the distance increased from the FIP, PFAAs concentrations in all media showed a sharp initial decrease followed by a moderate decline. Elevated PFAA concentrations in soil and grains were still present within a radius of 10 km of the FIP. The soil contamination was associated with the presence of PFAAs in irrigation water and precipitation, and perfluorooctanoic acid (PFOA) was the dominant PFAA component in soil. However, due to bioaccumulation preference, short-chain perfluoroalkyl carboxylic acids (PFCAs), especially perfluorobutanoic acid (PFBA), became the major PFAA contaminants in grains of wheat and maize. The bioaccumulation factors (BAFs) for both grains showed a decrease with increasing chain length of PFAAs (approximately 0.5 log decrease per CF2 group). Compared to maize grain, wheat grain showed higher BAFs, possibly related to its higher protein content. The PFCA (C4-C8) concentrations (on a log10 basis) in agricultural soil and grain were found to show a linear positive correlation. Local human exposure of PFOA via the consumption of contaminated grains represents a health risk for local residents, especially for toddlers and children.

KW - PFAAs

KW - Agricultural soil

KW - Precipitation

KW - Crop bioaccumulation

KW - Human exposure

U2 - 10.1016/j.envint.2017.05.014

DO - 10.1016/j.envint.2017.05.014

M3 - Journal article

VL - 106

SP - 37

EP - 47

JO - Environment International

JF - Environment International

SN - 0160-4120

ER -