Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Curiosity-based learning in infants
T2 - A neurocomputational approach
AU - Twomey, Katherine Elizabeth
AU - Westermann, Gert
PY - 2018/7/1
Y1 - 2018/7/1
N2 - Infants are curious learners who drive their own cognitive development by imposing structure on their learning environment as they explore. Understanding the mechanisms by which infants structure their own learning is therefore critical to our understanding of development. Here we propose an explicit mechanism for intrinsically motivated information selection that maximizes learning. We first present a neurocomputational model of infant visual category learning, capturing existing empirical data on the role of environmental complexity on learning. Next we “set the model free”, allowing it to select its own stimuli based on a formalization of curiosity and three alternative selection mechanisms. We demonstrate that maximal learning emerges when the model is able to maximize stimulus novelty relative to its internal states, depending on the interaction across learning between the structure of the environment and the plasticity in the learner itself. We discuss the implications of this new curiosity mechanism for both existing computational models of reinforcement learning and for our understanding of this fundamental mechanism in early development.
AB - Infants are curious learners who drive their own cognitive development by imposing structure on their learning environment as they explore. Understanding the mechanisms by which infants structure their own learning is therefore critical to our understanding of development. Here we propose an explicit mechanism for intrinsically motivated information selection that maximizes learning. We first present a neurocomputational model of infant visual category learning, capturing existing empirical data on the role of environmental complexity on learning. Next we “set the model free”, allowing it to select its own stimuli based on a formalization of curiosity and three alternative selection mechanisms. We demonstrate that maximal learning emerges when the model is able to maximize stimulus novelty relative to its internal states, depending on the interaction across learning between the structure of the environment and the plasticity in the learner itself. We discuss the implications of this new curiosity mechanism for both existing computational models of reinforcement learning and for our understanding of this fundamental mechanism in early development.
U2 - 10.1111/desc.12629
DO - 10.1111/desc.12629
M3 - Journal article
VL - 21
JO - Developmental Science
JF - Developmental Science
SN - 1363-755X
IS - 4
M1 - e12629
ER -