Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Dealing with Complexity for Immune-Inspired Anomaly Detection in Cyber Physical Systems
AU - Reuter, Lenhard
AU - Leitner, Maria
AU - Smith, Paul
AU - Koschuch, Manuel
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2022/2/23
Y1 - 2022/2/23
N2 - With digitization, critical infrastructures face a higher risk of security incidents and attacks on cyber-physical systems (CPS). In the past 50 years, research and practice have developed various approaches to monitor and detect attacks such as with anomaly detection. While many approaches focuses on artificial neural networks, bio-inspired approaches utilize nature as reference. For example, artificial immune systems (AIS) refer to principles of the natural immune system. In this paper, we investigate the Negative Selection Algorithm (NSA), an algorithm from the domain of AIS for anomaly detection in CPS. Particularly in CPS, datasets can become quite complex and can require a number of detectors for the analysis. Therefore, we will investigate how AIS can be extended to handle and manage complex datasets of CPS. We propose two models that use Principal Component Analysis (PCA) and Autoencoder (AE) to enable dimensionality reduction. Using these models, we are able to show that it is possible to apply the NSA approach to such datasets. Our results indicate that the use of PCA and AE is beneficial for both a better representation of the data and therefore significantly relevant for an improvement of the detection rate, and provides in addition the possibility to add further features to support the identification of anomalies. As the NSA approach allows for distributed computation, it might be possible to allow faster or distributed detection; the extent to which this is possible remains to be investigated and therefore represents future work.
AB - With digitization, critical infrastructures face a higher risk of security incidents and attacks on cyber-physical systems (CPS). In the past 50 years, research and practice have developed various approaches to monitor and detect attacks such as with anomaly detection. While many approaches focuses on artificial neural networks, bio-inspired approaches utilize nature as reference. For example, artificial immune systems (AIS) refer to principles of the natural immune system. In this paper, we investigate the Negative Selection Algorithm (NSA), an algorithm from the domain of AIS for anomaly detection in CPS. Particularly in CPS, datasets can become quite complex and can require a number of detectors for the analysis. Therefore, we will investigate how AIS can be extended to handle and manage complex datasets of CPS. We propose two models that use Principal Component Analysis (PCA) and Autoencoder (AE) to enable dimensionality reduction. Using these models, we are able to show that it is possible to apply the NSA approach to such datasets. Our results indicate that the use of PCA and AE is beneficial for both a better representation of the data and therefore significantly relevant for an improvement of the detection rate, and provides in addition the possibility to add further features to support the identification of anomalies. As the NSA approach allows for distributed computation, it might be possible to allow faster or distributed detection; the extent to which this is possible remains to be investigated and therefore represents future work.
U2 - 10.1007/978-3-030-97532-6_9
DO - 10.1007/978-3-030-97532-6_9
M3 - Conference contribution/Paper
SN - 9783030975319
T3 - Communications in Computer and Information Science
SP - 151
EP - 170
BT - Secure Knowledge Management In The Artificial Intelligence Era - 9th International Conference, SKM 2021, Proceedings
A2 - Krishnan, Ram
A2 - Rao, H. Raghav
A2 - Sahay, Sanjay K.
A2 - Samtani, Sagar
A2 - Zhao, Ziming
PB - Springer
CY - Cham
ER -