Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Decontamination of chlorine gas by organic amine modified copper-exchanged zeolite
AU - Liu, Erming
AU - Sarkar, Binoy
AU - Chen, Zuliang
AU - Naidu, Ravi
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Removal of chlorine gas (Cl2) from air is of critical requirement in order to address point-source emissions possibly during a terrorist attack or an industrial accident resulting in Cl2 contamination of the atmosphere. In this work, copper (Cu) exchanged zeolite Y (CuY) was functionalised with triethylenediamine (TEDA) and the capacity to remove Cl2 was evaluated. The materials were characterised by nitrogen (N2) adsorption-desorption studies, Fourier Transform Infrared (FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The materials' ability to remove Cl2 was investigated via a dynamic breakthrough test. Copper exchanged zeolite displayed a low adsorption of Cl2 in spite of its large surface area. However, Cl2 removal greatly improved following functionalisation with TEDA. XPS analysis revealed that Cl2 was removed via a catalytic hydrolysis reaction where adsorbed water vapour transformed Cl2 into Cl- which could be further trapped in the zeolite structural framework. Moisture could increase the Cl2 removal capacity, but the competition for adsorption between water and chlorine molecules was also observed. The spent adsorbent after exposure to Cl2 could be easily recycled with an excessive water vapour treatment. The reusability was also investigated and the adsorbent could be used for more than five times. This material can potentially be used in air filters. It may provide an efficient way for decontaminating Cl2 during a terrorist attack or an industrial accident.
AB - Removal of chlorine gas (Cl2) from air is of critical requirement in order to address point-source emissions possibly during a terrorist attack or an industrial accident resulting in Cl2 contamination of the atmosphere. In this work, copper (Cu) exchanged zeolite Y (CuY) was functionalised with triethylenediamine (TEDA) and the capacity to remove Cl2 was evaluated. The materials were characterised by nitrogen (N2) adsorption-desorption studies, Fourier Transform Infrared (FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The materials' ability to remove Cl2 was investigated via a dynamic breakthrough test. Copper exchanged zeolite displayed a low adsorption of Cl2 in spite of its large surface area. However, Cl2 removal greatly improved following functionalisation with TEDA. XPS analysis revealed that Cl2 was removed via a catalytic hydrolysis reaction where adsorbed water vapour transformed Cl2 into Cl- which could be further trapped in the zeolite structural framework. Moisture could increase the Cl2 removal capacity, but the competition for adsorption between water and chlorine molecules was also observed. The spent adsorbent after exposure to Cl2 could be easily recycled with an excessive water vapour treatment. The reusability was also investigated and the adsorbent could be used for more than five times. This material can potentially be used in air filters. It may provide an efficient way for decontaminating Cl2 during a terrorist attack or an industrial accident.
KW - Adsorbent recycling
KW - Adsorption
KW - Chlorine decontamination
KW - Point-source emission
KW - Zeolite functionalisation
U2 - 10.1016/j.micromeso.2016.01.023
DO - 10.1016/j.micromeso.2016.01.023
M3 - Journal article
AN - SCOPUS:84960368596
VL - 225
SP - 450
EP - 455
JO - Microporous and Mesoporous Materials
JF - Microporous and Mesoporous Materials
SN - 1387-1811
ER -