Final published version, 315 KB, PDF document
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Deep Learning Approaches to Detecting Safeguarding Concerns in Schoolchildren’s Online Conversations
AU - Franklin, Emma
AU - Ranasinghe, Tharindu
PY - 2023/9/4
Y1 - 2023/9/4
N2 - For school teachers and Designated Safeguarding Leads (DSLs), computers and other school-owned communication devices are both indispensable and deeply worrisome. For their education, children require access to the Internet, as well as a standard institutional ICT infrastructure, including e-mail and other forms of online communication technology. Given the sheer volume of data being generated and shared on a daily basis within schools, most teachers and DSLs can no longer monitor the safety and wellbeing of their students without the use of specialist safeguarding software. In this paper, we experiment with the use of state-of-the-art neural network models on the modelling of a dataset of almost 9,000 anonymised child-generated chat messages on the Microsoft Teams platform. The data was manually classified into eight fine-grained classes of safeguarding concerns (or false alarms) that a monitoring program would be interested in, and these were further split into two binary classes: true positives (real safeguarding concerns) and false positives (false alarms). For the fine grained classification, our models achieved a macro F1 score of 73.56, while for the binary classification, we achieved a macro F1 score of 87.32. This first experiment into the use of Deep Learning for detecting safeguarding concerns represents an important step towards achieving high-accuracy and reliable monitoring information for busy teachers and safeguarding leads.
AB - For school teachers and Designated Safeguarding Leads (DSLs), computers and other school-owned communication devices are both indispensable and deeply worrisome. For their education, children require access to the Internet, as well as a standard institutional ICT infrastructure, including e-mail and other forms of online communication technology. Given the sheer volume of data being generated and shared on a daily basis within schools, most teachers and DSLs can no longer monitor the safety and wellbeing of their students without the use of specialist safeguarding software. In this paper, we experiment with the use of state-of-the-art neural network models on the modelling of a dataset of almost 9,000 anonymised child-generated chat messages on the Microsoft Teams platform. The data was manually classified into eight fine-grained classes of safeguarding concerns (or false alarms) that a monitoring program would be interested in, and these were further split into two binary classes: true positives (real safeguarding concerns) and false positives (false alarms). For the fine grained classification, our models achieved a macro F1 score of 73.56, while for the binary classification, we achieved a macro F1 score of 87.32. This first experiment into the use of Deep Learning for detecting safeguarding concerns represents an important step towards achieving high-accuracy and reliable monitoring information for busy teachers and safeguarding leads.
M3 - Conference contribution/Paper
SP - 364
EP - 372
BT - Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
A2 - Angelova, Galia
A2 - Kunilovskaya, Maria
A2 - Mitkov, Ruslan
PB - INCOMA Ltd
CY - Varna
T2 - 14th Conference on Recent Advances in Natural Language Processing
Y2 - 4 September 2023 through 6 September 2023
ER -