Home > Research > Publications & Outputs > Degradation of articular cartilage keratan sulp...
View graph of relations

Degradation of articular cartilage keratan sulphates using hydrazinolysis and nitrous acid. Environment of fucose residues.

Research output: Contribution to Journal/MagazineJournal article

Published
<mark>Journal publication date</mark>1992
<mark>Journal</mark>Biochemical Journal
Issue number1
Volume286
Number of pages7
Pages (from-to)235-241
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Alkaline borohydride-reduced keratan sulphate (KS) chains from bovine articular cartilage (6-8-year-old animals) were fragmented by an anhydrous hydrazine/nitrous acid procedure, previously used on KS by Hopwood & Elliott to isolate the major disaccharides from the poly-N-acetyl-lactosamine repeat sequence [Hopwood & Elliott (1983) Carbohydr. Res. 117, 263-274]. The resulting oligosaccharides were reduced with NaB3H4 or NaBH4 and subjected to ion-exchange chromatography on a Nucleosil 5SB column. In addition to the major disaccharides, two fucose-containing oligosaccharides were examined by high-field 1H n.m.r. spectroscopy, and shown to have the following structures (where AnManOH is 2,5-anhydro-D-mannitol): [formula: see text] It is evident that the presence of fucose protects the N-acetylglucosamine residue from de-N-acetylation, and therefore fragments are produced which preserve the immediate environment of the fucose residue. It may be of biosynthetic significance that these two oligosaccharides contain an unsulphated galactose on the non-reducing side of the fucose residue. The hydrazine/nitrous acid/NaB3H4 method followed by h.p.l.c. provides a sensitive fingerprinting technique for the assay of KS composition and sub-populations.