Home > Research > Publications & Outputs > Design and Fabrication of E-band Traveling Wave...

Electronic data

  • Design_and_Fabrication_of_E_band_Traveling_Wave_Tube_for_wireless_high_data_rate_links_Revision

    Rights statement: ©2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 9.64 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Design and Fabrication of E-band Traveling Wave Tube for High Data Rate Wireless Links

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Design and Fabrication of E-band Traveling Wave Tube for High Data Rate Wireless Links. / Paoloni, Claudio; Basu, Rupa; Narasimhan, Purushothaman et al.
In: IEEE Transactions on Electron Devices, Vol. 70, No. 6, 01.06.2023, p. 2773-2779.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Paoloni C, Basu R, Narasimhan P, Gates J, Letizia R. Design and Fabrication of E-band Traveling Wave Tube for High Data Rate Wireless Links. IEEE Transactions on Electron Devices. 2023 Jun 1;70(6):2773-2779. Epub 2023 Jan 23. doi: 10.1109/TED.2023.3237184

Author

Bibtex

@article{e591376722714dac85b1a5bb8b4ed328,
title = "Design and Fabrication of E-band Traveling Wave Tube for High Data Rate Wireless Links",
abstract = "E-band (71 - 76 GHz and 81 - 86 GHz) is widely used for wireless point to point links with a few Gigabit/second data rate. E-band front-ends are powered by solid state amplifiers with about 1 W output power per module. This level of output power limits range and spectral efficiency in rain condition and has to be compensated by high gain antennas or backup low frequency links with reduced capacity. The availability of tens of Watts of transmission power would allow higher spectral efficiency and long range, and the use of lower gain antennas for multibeam and area coverage.Millimeter wave Traveling Wave Tubes (TWTs) are gaining inter- est due to their higher power, more than one order of magnitude, in comparison to solid state devices. Helix TWTs, typically built at microwaves, are very arduous to fabricate due to the extremely small diameter of an helix at E-band.This paper reports the design and fabrication of the first ever E- band TWT based on a full metal slow wave structure, the double corrugated waveguide. The TWT is designed to provide about 70 W power and more than 35 dB gain in the 71 - 76 GHz band. A test TWT using a single section interaction structure is in the final assembly phase as proof of concept with about 2 W output power. The E-band TWT performance will open new perspectives in the availability of long range wireless links with multi-Gb/s data rate needed for enabling 5G and 6G new networks.",
author = "Claudio Paoloni and Rupa Basu and Purushothaman Narasimhan and Jonathan Gates and Rosa Letizia",
note = "{\textcopyright}2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. ",
year = "2023",
month = jun,
day = "1",
doi = "10.1109/TED.2023.3237184",
language = "English",
volume = "70",
pages = "2773--2779",
journal = "IEEE Transactions on Electron Devices",
issn = "0018-9383",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "6",

}

RIS

TY - JOUR

T1 - Design and Fabrication of E-band Traveling Wave Tube for High Data Rate Wireless Links

AU - Paoloni, Claudio

AU - Basu, Rupa

AU - Narasimhan, Purushothaman

AU - Gates, Jonathan

AU - Letizia, Rosa

N1 - ©2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PY - 2023/6/1

Y1 - 2023/6/1

N2 - E-band (71 - 76 GHz and 81 - 86 GHz) is widely used for wireless point to point links with a few Gigabit/second data rate. E-band front-ends are powered by solid state amplifiers with about 1 W output power per module. This level of output power limits range and spectral efficiency in rain condition and has to be compensated by high gain antennas or backup low frequency links with reduced capacity. The availability of tens of Watts of transmission power would allow higher spectral efficiency and long range, and the use of lower gain antennas for multibeam and area coverage.Millimeter wave Traveling Wave Tubes (TWTs) are gaining inter- est due to their higher power, more than one order of magnitude, in comparison to solid state devices. Helix TWTs, typically built at microwaves, are very arduous to fabricate due to the extremely small diameter of an helix at E-band.This paper reports the design and fabrication of the first ever E- band TWT based on a full metal slow wave structure, the double corrugated waveguide. The TWT is designed to provide about 70 W power and more than 35 dB gain in the 71 - 76 GHz band. A test TWT using a single section interaction structure is in the final assembly phase as proof of concept with about 2 W output power. The E-band TWT performance will open new perspectives in the availability of long range wireless links with multi-Gb/s data rate needed for enabling 5G and 6G new networks.

AB - E-band (71 - 76 GHz and 81 - 86 GHz) is widely used for wireless point to point links with a few Gigabit/second data rate. E-band front-ends are powered by solid state amplifiers with about 1 W output power per module. This level of output power limits range and spectral efficiency in rain condition and has to be compensated by high gain antennas or backup low frequency links with reduced capacity. The availability of tens of Watts of transmission power would allow higher spectral efficiency and long range, and the use of lower gain antennas for multibeam and area coverage.Millimeter wave Traveling Wave Tubes (TWTs) are gaining inter- est due to their higher power, more than one order of magnitude, in comparison to solid state devices. Helix TWTs, typically built at microwaves, are very arduous to fabricate due to the extremely small diameter of an helix at E-band.This paper reports the design and fabrication of the first ever E- band TWT based on a full metal slow wave structure, the double corrugated waveguide. The TWT is designed to provide about 70 W power and more than 35 dB gain in the 71 - 76 GHz band. A test TWT using a single section interaction structure is in the final assembly phase as proof of concept with about 2 W output power. The E-band TWT performance will open new perspectives in the availability of long range wireless links with multi-Gb/s data rate needed for enabling 5G and 6G new networks.

U2 - 10.1109/TED.2023.3237184

DO - 10.1109/TED.2023.3237184

M3 - Journal article

VL - 70

SP - 2773

EP - 2779

JO - IEEE Transactions on Electron Devices

JF - IEEE Transactions on Electron Devices

SN - 0018-9383

IS - 6

ER -