Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Designing high entropy alloys employing thermodynamics and Gaussian process statistical analysis
AU - Tancret, Franck
AU - Toda-Caraballo, Isaac
AU - Menou, Edern
AU - Rivera Díaz-Del-Castillo, Pedro Eduardo Jose
PY - 2017/2/5
Y1 - 2017/2/5
N2 - High entropy alloys (HEAs), a category of highly concentrated multicomponent alloys, have become a subject of interest in the past years due to their combination of properties. The development of these single phase solid solution alloys, containing between 5% and 35% of at least five different elements, has mainly relied on trial-and-error experiments, and more recently on modelling. The latter has notably focused on criteria to guide the formation of a single solid solution: (1) Hume-Rothery rules or their modification based on elemental variations in atomic radius, electronegativity, valence or number of itinerant electrons; (2) the use of thermodynamic concepts relying on estimates of enthalpy or entropy of mixing, and/or on melting or spinodal decomposition temperatures; (3) criteria based on lattice distortion; and (4) computational thermodynamics using the CALculation of PHAse Diagrams (CALPHAD) method. However, none of these criteria or methods, taken alone, can reliably predict the formation of a single solid solution. Instead, based on a critical assessment and a Gaussian process statistical analysis, a robust strategy to predict the formation of a single solid solution is proposed, taking into account most of the previously proposed criteria simultaneously. The method can be used as a guide to design new HEAs.
AB - High entropy alloys (HEAs), a category of highly concentrated multicomponent alloys, have become a subject of interest in the past years due to their combination of properties. The development of these single phase solid solution alloys, containing between 5% and 35% of at least five different elements, has mainly relied on trial-and-error experiments, and more recently on modelling. The latter has notably focused on criteria to guide the formation of a single solid solution: (1) Hume-Rothery rules or their modification based on elemental variations in atomic radius, electronegativity, valence or number of itinerant electrons; (2) the use of thermodynamic concepts relying on estimates of enthalpy or entropy of mixing, and/or on melting or spinodal decomposition temperatures; (3) criteria based on lattice distortion; and (4) computational thermodynamics using the CALculation of PHAse Diagrams (CALPHAD) method. However, none of these criteria or methods, taken alone, can reliably predict the formation of a single solid solution. Instead, based on a critical assessment and a Gaussian process statistical analysis, a robust strategy to predict the formation of a single solid solution is proposed, taking into account most of the previously proposed criteria simultaneously. The method can be used as a guide to design new HEAs.
KW - Data mining
KW - HEA
KW - Neural network
KW - Thermo-Calc
U2 - 10.1016/j.matdes.2016.11.049
DO - 10.1016/j.matdes.2016.11.049
M3 - Journal article
AN - SCOPUS:85002524197
VL - 115
SP - 486
EP - 497
JO - Materials and Design
JF - Materials and Design
SN - 0264-1275
ER -