Home > Research > Publications & Outputs > Detecting changes and anomalies in nonstationar...

Links

Text available via DOI:

View graph of relations

Detecting changes and anomalies in nonstationary contextual bandits with an application to task categorisation

Research output: Contribution to Journal/MagazineJournal articlepeer-review

E-pub ahead of print

Standard

Detecting changes and anomalies in nonstationary contextual bandits with an application to task categorisation. / Austin, Edward; Morgan, Lucy E.
In: Information Sciences, Vol. 717, 122270, 30.11.2025.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Austin E, Morgan LE. Detecting changes and anomalies in nonstationary contextual bandits with an application to task categorisation. Information Sciences. 2025 Nov 30;717:122270. Epub 2025 May 14. doi: 10.1016/j.ins.2025.122270

Author

Bibtex

@article{ac9d191c00594ded8277f49efbb7cc23,
title = "Detecting changes and anomalies in nonstationary contextual bandits with an application to task categorisation",
abstract = "As society becomes increasingly connected, the demands placed on telecommunications systems will only grow. To meet these demands network providers want to deploy automated tools that make decisions based on available network information. Furthermore, there is a need for these tools to be agile, so that they can react to changes, or identify unexpected outcomes, as they occur in this rapidly evolving digital landscape. To address this challenge the first nonstationary contextual bandit method that simultaneously monitors the observed rewards for both changes and anomalies, SCAPA-UCB, is introduced. In addition to incorporating change and anomaly detection, the proposed approach relaxes common nonstationary bandit assumptions on the reward distribution for an arm, allowing contextual information to be incorporated using a broad range of statistical models. Furthermore, the method provides a faster retraining process once a change is detected. Extensive simulation studies are performed to establish the favourable performance of SCAPA-UCB, and an application categorising maintenance tasks on a telecommunications network is presented.",
author = "Edward Austin and Morgan, {Lucy E.}",
year = "2025",
month = may,
day = "14",
doi = "10.1016/j.ins.2025.122270",
language = "English",
volume = "717",
journal = "Information Sciences",
issn = "0020-0255",
publisher = "Elsevier Inc.",

}

RIS

TY - JOUR

T1 - Detecting changes and anomalies in nonstationary contextual bandits with an application to task categorisation

AU - Austin, Edward

AU - Morgan, Lucy E.

PY - 2025/5/14

Y1 - 2025/5/14

N2 - As society becomes increasingly connected, the demands placed on telecommunications systems will only grow. To meet these demands network providers want to deploy automated tools that make decisions based on available network information. Furthermore, there is a need for these tools to be agile, so that they can react to changes, or identify unexpected outcomes, as they occur in this rapidly evolving digital landscape. To address this challenge the first nonstationary contextual bandit method that simultaneously monitors the observed rewards for both changes and anomalies, SCAPA-UCB, is introduced. In addition to incorporating change and anomaly detection, the proposed approach relaxes common nonstationary bandit assumptions on the reward distribution for an arm, allowing contextual information to be incorporated using a broad range of statistical models. Furthermore, the method provides a faster retraining process once a change is detected. Extensive simulation studies are performed to establish the favourable performance of SCAPA-UCB, and an application categorising maintenance tasks on a telecommunications network is presented.

AB - As society becomes increasingly connected, the demands placed on telecommunications systems will only grow. To meet these demands network providers want to deploy automated tools that make decisions based on available network information. Furthermore, there is a need for these tools to be agile, so that they can react to changes, or identify unexpected outcomes, as they occur in this rapidly evolving digital landscape. To address this challenge the first nonstationary contextual bandit method that simultaneously monitors the observed rewards for both changes and anomalies, SCAPA-UCB, is introduced. In addition to incorporating change and anomaly detection, the proposed approach relaxes common nonstationary bandit assumptions on the reward distribution for an arm, allowing contextual information to be incorporated using a broad range of statistical models. Furthermore, the method provides a faster retraining process once a change is detected. Extensive simulation studies are performed to establish the favourable performance of SCAPA-UCB, and an application categorising maintenance tasks on a telecommunications network is presented.

U2 - 10.1016/j.ins.2025.122270

DO - 10.1016/j.ins.2025.122270

M3 - Journal article

VL - 717

JO - Information Sciences

JF - Information Sciences

SN - 0020-0255

M1 - 122270

ER -