Home > Research > Publications & Outputs > Determining ecosystem functioning in Brazilian ...

Links

Text available via DOI:

View graph of relations

Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. / Martinelli, L. A.; Nardoto, G. B.; Soltangheisi, A. et al.
In: Biogeochemistry, Vol. 154, 30.06.2021, p. 405-423.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Martinelli, LA, Nardoto, GB, Soltangheisi, A, Reis, GRG, Abdalla-Filho, AL, Camargo, PB, Domingues, TF, Faria, D, Figueira, AM, Gomes, TF, Lins, SRM, Mardegan, SF, Mariano, E, Miatto, RC, Moraes, R, Moreira, MZ, Oliveira, RS, Ometto, JPHB, Santos, FLS, Sena-Souza, J, Silva, DML, Silva, JCSS & Vieira, AS 2021, 'Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios', Biogeochemistry, vol. 154, pp. 405-423. https://doi.org/10.1007/s10533-020-00714-2

APA

Martinelli, L. A., Nardoto, G. B., Soltangheisi, A., Reis, G. R. G., Abdalla-Filho, A. L., Camargo, P. B., Domingues, T. F., Faria, D., Figueira, A. M., Gomes, T. F., Lins, S. R. M., Mardegan, S. F., Mariano, E., Miatto, R. C., Moraes, R., Moreira, M. Z., Oliveira, R. S., Ometto, J. P. H. B., Santos, F. L. S., ... Vieira, A. S. (2021). Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. Biogeochemistry, 154, 405-423. https://doi.org/10.1007/s10533-020-00714-2

Vancouver

Martinelli LA, Nardoto GB, Soltangheisi A, Reis GRG, Abdalla-Filho AL, Camargo PB et al. Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. Biogeochemistry. 2021 Jun 30;154:405-423. Epub 2020 Nov 3. doi: 10.1007/s10533-020-00714-2

Author

Bibtex

@article{664861ea5bfd4351950784dfdbaca68e,
title = "Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios",
abstract = "By analyzing 6,480 tree leaf samples from 57 sites within Brazilian biomes, we considered whether vegetation types in terrestrial ecosystems reflect biogeochemical diversity and whether they fit into a leaf economics spectrum (LES). To achieve this, we investigated the relations among leaf carbon (C) and nitrogen (N) concentrations, their isotope natural abundance and C:N ratio. In addition, we tested their correlations with mean annual temperature (MAT) and precipitation (MAP), as climatic factors. We found consistent differences in the C and N concentrations and their isotopic composition among the vegetation types. MAP is the main climatic driver of changes in N, C:N ratio, δ15N, and δ13C, correlating negatively with N and positively with C:N ratio. These relations show that these biomes follow an LES. The Caatinga had the highest δ15N values, suggesting that N residence time in soil is longer due to low leaching and plant uptake. We observed that MAP is not the only factor influencing δ13C values in different biomes; instead canopy effect probably explains the highest values observed in the Cerrado. Our results reinforce earlier findings that life diversity in the tropics reflects biogeochemistry diversity and leaf δ15N opens the possibility for investigating plant trade-offs dictated by the LES. Finally, we expect our findings to contribute to a better understanding of the tropics in global climate models.",
keywords = "Biogeochemical diversity, Climate models, Foliar nutrients, Leaf economics spectrum, Tropical forests",
author = "Martinelli, {L. A.} and Nardoto, {G. B.} and A. Soltangheisi and Reis, {G. R.G.} and Abdalla-Filho, {A. L.} and Camargo, {P. B.} and Domingues, {T. F.} and D. Faria and Figueira, {A. M.} and Gomes, {T. F.} and Lins, {S. R.M.} and Mardegan, {S. F.} and E. Mariano and Miatto, {R. C.} and R. Moraes and Moreira, {M. Z.} and Oliveira, {R. S.} and Ometto, {J. P.H.B.} and Santos, {F. L.S.} and J. Sena-Souza and Silva, {D. M.L.} and Silva, {J. C.S.S.} and Vieira, {A. S.}",
year = "2021",
month = jun,
day = "30",
doi = "10.1007/s10533-020-00714-2",
language = "English",
volume = "154",
pages = "405--423",
journal = "Biogeochemistry",
issn = "0168-2563",
publisher = "SPRINGER",

}

RIS

TY - JOUR

T1 - Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios

AU - Martinelli, L. A.

AU - Nardoto, G. B.

AU - Soltangheisi, A.

AU - Reis, G. R.G.

AU - Abdalla-Filho, A. L.

AU - Camargo, P. B.

AU - Domingues, T. F.

AU - Faria, D.

AU - Figueira, A. M.

AU - Gomes, T. F.

AU - Lins, S. R.M.

AU - Mardegan, S. F.

AU - Mariano, E.

AU - Miatto, R. C.

AU - Moraes, R.

AU - Moreira, M. Z.

AU - Oliveira, R. S.

AU - Ometto, J. P.H.B.

AU - Santos, F. L.S.

AU - Sena-Souza, J.

AU - Silva, D. M.L.

AU - Silva, J. C.S.S.

AU - Vieira, A. S.

PY - 2021/6/30

Y1 - 2021/6/30

N2 - By analyzing 6,480 tree leaf samples from 57 sites within Brazilian biomes, we considered whether vegetation types in terrestrial ecosystems reflect biogeochemical diversity and whether they fit into a leaf economics spectrum (LES). To achieve this, we investigated the relations among leaf carbon (C) and nitrogen (N) concentrations, their isotope natural abundance and C:N ratio. In addition, we tested their correlations with mean annual temperature (MAT) and precipitation (MAP), as climatic factors. We found consistent differences in the C and N concentrations and their isotopic composition among the vegetation types. MAP is the main climatic driver of changes in N, C:N ratio, δ15N, and δ13C, correlating negatively with N and positively with C:N ratio. These relations show that these biomes follow an LES. The Caatinga had the highest δ15N values, suggesting that N residence time in soil is longer due to low leaching and plant uptake. We observed that MAP is not the only factor influencing δ13C values in different biomes; instead canopy effect probably explains the highest values observed in the Cerrado. Our results reinforce earlier findings that life diversity in the tropics reflects biogeochemistry diversity and leaf δ15N opens the possibility for investigating plant trade-offs dictated by the LES. Finally, we expect our findings to contribute to a better understanding of the tropics in global climate models.

AB - By analyzing 6,480 tree leaf samples from 57 sites within Brazilian biomes, we considered whether vegetation types in terrestrial ecosystems reflect biogeochemical diversity and whether they fit into a leaf economics spectrum (LES). To achieve this, we investigated the relations among leaf carbon (C) and nitrogen (N) concentrations, their isotope natural abundance and C:N ratio. In addition, we tested their correlations with mean annual temperature (MAT) and precipitation (MAP), as climatic factors. We found consistent differences in the C and N concentrations and their isotopic composition among the vegetation types. MAP is the main climatic driver of changes in N, C:N ratio, δ15N, and δ13C, correlating negatively with N and positively with C:N ratio. These relations show that these biomes follow an LES. The Caatinga had the highest δ15N values, suggesting that N residence time in soil is longer due to low leaching and plant uptake. We observed that MAP is not the only factor influencing δ13C values in different biomes; instead canopy effect probably explains the highest values observed in the Cerrado. Our results reinforce earlier findings that life diversity in the tropics reflects biogeochemistry diversity and leaf δ15N opens the possibility for investigating plant trade-offs dictated by the LES. Finally, we expect our findings to contribute to a better understanding of the tropics in global climate models.

KW - Biogeochemical diversity

KW - Climate models

KW - Foliar nutrients

KW - Leaf economics spectrum

KW - Tropical forests

U2 - 10.1007/s10533-020-00714-2

DO - 10.1007/s10533-020-00714-2

M3 - Journal article

AN - SCOPUS:85094917168

VL - 154

SP - 405

EP - 423

JO - Biogeochemistry

JF - Biogeochemistry

SN - 0168-2563

ER -