Accepted author manuscript, 445 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
<mark>Journal publication date</mark> | 31/08/2023 |
---|---|
<mark>Journal</mark> | Global Change Biology |
Issue number | 16 |
Volume | 29 |
Number of pages | 9 |
Pages (from-to) | 4586-4594 |
Publication Status | Published |
Early online date | 2/06/23 |
<mark>Original language</mark> | English |
Identifying the thresholds for the positive responses of total net primary productivity (NPP) to nitrogen (N) enrichment is an essential prerequisite for predicting the benefits of N deposition on ecosystem carbon sequestration. However, the responses of below-ground NPP (BNPP) to N enrichment are unknown in many ecosystems, which limits our ability to understand the carbon cycling under the scenario of increasing N availability. We examined the changes in above-ground NPP (ANPP), BNPP, and NPP of a temperate meadow steppe across a wide-ranging N addition gradient (0, 2, 5, 10, 20, and 50 g N m -2 year -1 ) during 5 years. Both ANPP and NPP increased nonlinearly with N addition rates. The N saturation threshold for ANPP (T A ) and NPP (T N ) was at the rate of 13.11 and 6.70 g N m -2 year -1 , respectively. BNPP decreased with increasing N addition when N addition rates ˃5 g N m -2 year -1 , resulting in much lower T N than T A . Soil N enrichment played a key role in driving the negative impacts of high N addition rates on BNPP, and consequently on the earlier occurrence of N saturation threshold for NPP. Our results highlight the negative effects of soil N enrichment on NPP in natural grasslands super-saturated with N. Furthermore, by considering ANPP and BNPP simultaneously, our results indicate that previous findings from above-ground might have over-estimated the positive effects of N deposition on primary productivity.