Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Differentiating smartphone users by app usage.
AU - Welke, Pascal
AU - Andone, Ionut
AU - Blaszkiewicz, Konrad
AU - Markowetz, Alexander
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2016/9/12
Y1 - 2016/9/12
N2 - Tracking users across websites and apps is as desirable to the marketing industry as it is unalluring to users. The central challenge lies in identifying users from the perspective of different apps/sites. While there are methods to identify users via technical settings of their phones, these are prone to countermeasures. Yet, in this paper, we show that it is possible to differentiate users via their set of used apps, their app signature. To this end, we investigate the app usage of 46726 participants from the Menthal project. Even limiting our observation to the 500 globally most frequent apps results in unique signatures for 99.67% of users. Furthermore, even under this restriction, the average minimum Hamming distance to the closest other user is 25.93. Avoiding identification would thus require a massive change in the behavior of a user. Indeed, 99.4% of all users have unique usage patterns among the top 60 globally used apps. In contrast to previous work, this paper differentiates between users based on behavior instead of technical parameters. It thus opens an entirely new discussion regarding privacy.
AB - Tracking users across websites and apps is as desirable to the marketing industry as it is unalluring to users. The central challenge lies in identifying users from the perspective of different apps/sites. While there are methods to identify users via technical settings of their phones, these are prone to countermeasures. Yet, in this paper, we show that it is possible to differentiate users via their set of used apps, their app signature. To this end, we investigate the app usage of 46726 participants from the Menthal project. Even limiting our observation to the 500 globally most frequent apps results in unique signatures for 99.67% of users. Furthermore, even under this restriction, the average minimum Hamming distance to the closest other user is 25.93. Avoiding identification would thus require a massive change in the behavior of a user. Indeed, 99.4% of all users have unique usage patterns among the top 60 globally used apps. In contrast to previous work, this paper differentiates between users based on behavior instead of technical parameters. It thus opens an entirely new discussion regarding privacy.
U2 - 10.1145/2971648.2971707
DO - 10.1145/2971648.2971707
M3 - Conference contribution/Paper
SN - 9781450344616
SP - 519
EP - 523
BT - Differentiating smartphone users by app usage.
PB - The Association for Computing Machinery
T2 - UbiComp '16: The 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing
Y2 - 12 September 2016 through 16 September 2016
ER -