Home > Research > Publications & Outputs > Diffusion in hypo-stoichiometric uranium mononi...

Electronic data

  • Diffusion in hypo-stoichiometric uranium mononitride

    Rights statement: This is the author’s version of a work that was accepted for publication in Progress in Nuclear Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Progress in Nuclear Energy, 142, 2021 DOI: 10.1016/j.pnucene.2021.103995

    Accepted author manuscript, 1.56 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Diffusion in hypo-stoichiometric uranium mononitride

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Diffusion in hypo-stoichiometric uranium mononitride. / Li, Jade; Murphy, Samuel.
In: Progress in Nuclear Energy, Vol. 142, 103995, 31.12.2021.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Li J, Murphy S. Diffusion in hypo-stoichiometric uranium mononitride. Progress in Nuclear Energy. 2021 Dec 31;142:103995. Epub 2021 Oct 23. doi: 10.1016/j.pnucene.2021.103995

Author

Li, Jade ; Murphy, Samuel. / Diffusion in hypo-stoichiometric uranium mononitride. In: Progress in Nuclear Energy. 2021 ; Vol. 142.

Bibtex

@article{28c4f758c0c547b29ec294a4e2d18986,
title = "Diffusion in hypo-stoichiometric uranium mononitride",
abstract = "Uranium nitride is a nuclear fuel of interest as it offers enhanced accident tolerance, owing to its intrinsic properties. Before UN can be deployed commercially it is essential to understand its properties and how they evolve during operation. Therefore, molecular dynamics has been employed to study the thermal expansion and diffusivity of the intrinsic species in UN and how these change with stoichiometry. The introduction of hypostoichiometry as either nitrogen antisites or nitrogen vacancy defects is predicted to lead to an increase in nitrogen diffusivity and a concomitant decrease in the activation energy. The activation energies predicted for nitrogen diffusion in hypostoichiometry samples containing antisite defects are shown to offer a very close agreement with experimental observations.",
keywords = "Diffusion, Molecular dynamics, Uranium mononitride",
author = "Jade Li and Samuel Murphy",
note = "This is the author{\textquoteright}s version of a work that was accepted for publication in Progress in Nuclear Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Progress in Nuclear Energy, 142, 2021 DOI: 10.1016/j.pnucene.2021.103995",
year = "2021",
month = dec,
day = "31",
doi = "10.1016/j.pnucene.2021.103995",
language = "English",
volume = "142",
journal = "Progress in Nuclear Energy",
issn = "0149-1970",
publisher = "Elsevier Ltd",

}

RIS

TY - JOUR

T1 - Diffusion in hypo-stoichiometric uranium mononitride

AU - Li, Jade

AU - Murphy, Samuel

N1 - This is the author’s version of a work that was accepted for publication in Progress in Nuclear Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Progress in Nuclear Energy, 142, 2021 DOI: 10.1016/j.pnucene.2021.103995

PY - 2021/12/31

Y1 - 2021/12/31

N2 - Uranium nitride is a nuclear fuel of interest as it offers enhanced accident tolerance, owing to its intrinsic properties. Before UN can be deployed commercially it is essential to understand its properties and how they evolve during operation. Therefore, molecular dynamics has been employed to study the thermal expansion and diffusivity of the intrinsic species in UN and how these change with stoichiometry. The introduction of hypostoichiometry as either nitrogen antisites or nitrogen vacancy defects is predicted to lead to an increase in nitrogen diffusivity and a concomitant decrease in the activation energy. The activation energies predicted for nitrogen diffusion in hypostoichiometry samples containing antisite defects are shown to offer a very close agreement with experimental observations.

AB - Uranium nitride is a nuclear fuel of interest as it offers enhanced accident tolerance, owing to its intrinsic properties. Before UN can be deployed commercially it is essential to understand its properties and how they evolve during operation. Therefore, molecular dynamics has been employed to study the thermal expansion and diffusivity of the intrinsic species in UN and how these change with stoichiometry. The introduction of hypostoichiometry as either nitrogen antisites or nitrogen vacancy defects is predicted to lead to an increase in nitrogen diffusivity and a concomitant decrease in the activation energy. The activation energies predicted for nitrogen diffusion in hypostoichiometry samples containing antisite defects are shown to offer a very close agreement with experimental observations.

KW - Diffusion

KW - Molecular dynamics

KW - Uranium mononitride

U2 - 10.1016/j.pnucene.2021.103995

DO - 10.1016/j.pnucene.2021.103995

M3 - Journal article

VL - 142

JO - Progress in Nuclear Energy

JF - Progress in Nuclear Energy

SN - 0149-1970

M1 - 103995

ER -