Neonicotinoid insecticides (NNIs) are among the most widely-used insecticides, although their threat to non-target organisms has attracted attention in recent years. In this study, a diffusive gradient in thin-films (DGT) passive sampling technique was developed for in situ monitoring of time-weighted average (TWA) concentrations of NNIs in groundwater and wastewater. Systematic studies demonstrated that DGT with HLB as binding gels (HLB-DGT) is suitable for quantitative sampling of NNIs under a wide range of conditions, independent of pH (5–9.5), ionic strength (0.001–0.5 M) and dissolved organic matter (0–10 mg/L). The HLB-DGT performance was also independent of the typical groundwater ionic environments. The thicknesses of in-situ measured diffusive boundary layer were 0.35 and 0.25 mm in the groundwater and effluent, respectively. HLB-DGT can provide TWA concentrations over 14–18 days’ deployment with linear uptake in both groundwater and wastewater. Concentrations and occurrence patterns of NNIs obtained by HLB-DGT were consistent with those measured from grab samples. The median TWA concentration of NNIs was 4.42 ng/L in water from the largest urban lake of China (the Tangxun Lake) in winter, with wastewater discharge being the main potential source. The reliability and stability of the HLB-DGT for measuring NNIs in the groundwater and surface water were confirmed and can be used to improve understanding of the occurrence and fate of NNIs in aquatic environment.