Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Direct phenotypic and genotypic detection of a recombinant pseudomonad population released into lake water
AU - Morgan, J. A.W.
AU - Winstanley, C.
AU - Pickup, R. W.
AU - Jones, J. G.
AU - Saunders, J. R.
PY - 1989/10/1
Y1 - 1989/10/1
N2 - As a system for studying the fate of genetically engineered microorganisms in the environment, we have previously constructed recombinant plasmids encoding a xylE marker gene (C. Winstanley, J.A.W. Morgan, R.W. Pickup, J.G. Jones, and J.R. Saunders, Appl. Environ. Microbiol. 55: 771-777, 1989). A series of direct membrane filter methods have been developed which facilitate the detection of bacterial cells harboring the xylE gene, its product, catechol 2,3-dioxygenase, and catechol 2,3-dioxygenase enzyme activity directly from water samples. These methods enable detection of recombinant populations at concentrations as low as 103 to 104 cells ml of lake water-1. Direct detection facilitates ecological studies of a range of bacterial strains containing the marker system in aquatic environments. The fate of a recombinant pseudomonad population in lake water was assessed by a combination of colony-forming ability, direct counts, and direct detection of the xylE gene and phenotypic expression of its product.
AB - As a system for studying the fate of genetically engineered microorganisms in the environment, we have previously constructed recombinant plasmids encoding a xylE marker gene (C. Winstanley, J.A.W. Morgan, R.W. Pickup, J.G. Jones, and J.R. Saunders, Appl. Environ. Microbiol. 55: 771-777, 1989). A series of direct membrane filter methods have been developed which facilitate the detection of bacterial cells harboring the xylE gene, its product, catechol 2,3-dioxygenase, and catechol 2,3-dioxygenase enzyme activity directly from water samples. These methods enable detection of recombinant populations at concentrations as low as 103 to 104 cells ml of lake water-1. Direct detection facilitates ecological studies of a range of bacterial strains containing the marker system in aquatic environments. The fate of a recombinant pseudomonad population in lake water was assessed by a combination of colony-forming ability, direct counts, and direct detection of the xylE gene and phenotypic expression of its product.
U2 - 10.1128/aem.55.10.2537-2544.1989
DO - 10.1128/aem.55.10.2537-2544.1989
M3 - Journal article
C2 - 2604395
AN - SCOPUS:0024432497
VL - 55
SP - 2537
EP - 2544
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
SN - 0099-2240
IS - 10
ER -