Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Econometrics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Econometrics, 190, 2, 2016 DOI: 10.1016/j.jeconom.2015.06.006
Accepted author manuscript, 1.46 MB, PDF document
Available under license: CC BY-NC-ND
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Directional distance functions
T2 - optimal endogenous directions
AU - Atkinson, Scott
AU - Tsionas, Efthymios
N1 - This is the author’s version of a work that was accepted for publication in Journal of Econometrics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Econometrics, 190, 2, 2016 DOI: 10.1016/j.jeconom.2015.06.006
PY - 2016/2
Y1 - 2016/2
N2 - A substantial literature has dealt with the problem of estimating multiple-input and multiple-output production functions, where inputs and outputs can be good and bad. Numerous studies can be found in the areas of productivity analysis, industrial organization, labor economics, and health economics. While many papers have estimated the more restrictive output- and input-oriented distance functions, here we estimate a more general directional distance function. A seminal paper on directional distance functions by Chambers (1998) as well as papers by Färe et al. (1997), Chambers et al. (1998), Färe and Grosskopf (2000), Grosskopf (2003), Färe et al. (2005), and Hudgins and Primont (2007) do not address the issue of how to choose an optimal direction set. Typically the direction is arbitrarily selected to be 1 for good outputs and −1 for inputs and bad outputs. By estimating the directional distance function together with the first-order conditions for cost minimization and profit maximization using Bayesian methods, we are able to estimate optimal firm-specific directions for each input and output which are consistent with allocative and technical efficiency. We apply these methods to an electric-utility panel data set, which contains firm-specific prices and quantities of good inputs and outputs as well as the quantities of bad inputs and outputs. Estimated firm-specific directions for each input and output are quite different from those normally assumed in the literature. The computed firm-specific technical efficiency, technical change, and productivity change based on estimated optimal directions are substantially higher than those calculated using fixed directions.
AB - A substantial literature has dealt with the problem of estimating multiple-input and multiple-output production functions, where inputs and outputs can be good and bad. Numerous studies can be found in the areas of productivity analysis, industrial organization, labor economics, and health economics. While many papers have estimated the more restrictive output- and input-oriented distance functions, here we estimate a more general directional distance function. A seminal paper on directional distance functions by Chambers (1998) as well as papers by Färe et al. (1997), Chambers et al. (1998), Färe and Grosskopf (2000), Grosskopf (2003), Färe et al. (2005), and Hudgins and Primont (2007) do not address the issue of how to choose an optimal direction set. Typically the direction is arbitrarily selected to be 1 for good outputs and −1 for inputs and bad outputs. By estimating the directional distance function together with the first-order conditions for cost minimization and profit maximization using Bayesian methods, we are able to estimate optimal firm-specific directions for each input and output which are consistent with allocative and technical efficiency. We apply these methods to an electric-utility panel data set, which contains firm-specific prices and quantities of good inputs and outputs as well as the quantities of bad inputs and outputs. Estimated firm-specific directions for each input and output are quite different from those normally assumed in the literature. The computed firm-specific technical efficiency, technical change, and productivity change based on estimated optimal directions are substantially higher than those calculated using fixed directions.
U2 - 10.1016/j.jeconom.2015.06.006
DO - 10.1016/j.jeconom.2015.06.006
M3 - Journal article
VL - 190
SP - 301
EP - 314
JO - Journal of Econometrics
JF - Journal of Econometrics
SN - 0304-4076
IS - 2
ER -