Rights statement: ©2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 750 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Discriminant Analysis via Joint Euler Transform and ℓ2, 1-Norm
AU - Liao, Shuangli
AU - Gao, Quanxue
AU - Yang, Zhaohua
AU - Chen, Fang
AU - Nie, Feiping
AU - Han, Jungong
N1 - ©2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2018/11
Y1 - 2018/11
N2 - Linear discriminant analysis (LDA) has been widely used for face recognition. However, when identifying faces in the wild, the existence of outliers that deviate significantly from the rest of the data can arbitrarily skew the desired solution. This usually deteriorates LDA’s performance dramatically, thus preventing it from mass deployment in real-world applications. To handle this problem, we propose an effective distance metric learning method-based LDA, namely, Euler LDA-L21 (e-LDA-L21). e-LDA-L21 is carried out in two stages, in which each image is mapped into a complex space by Euler transform in the first stage and the ℓ2,1 -norm is adopted as the distance metric in the second stage. This not only reveals nonlinear features but also exploits the geometric structure of data. To solve e-LDA-L21 efficiently, we propose an iterative algorithm, which is a closed-form solution at each iteration with convergence guaranteed. Finally, we extend e-LDA-L21 to Euler 2DLDA-L21 (e-2DLDA-L21) which further exploits the spatial information embedded in image pixels. Experimental results on several face databases demonstrate its superiority over the state-of-the-art algorithms.
AB - Linear discriminant analysis (LDA) has been widely used for face recognition. However, when identifying faces in the wild, the existence of outliers that deviate significantly from the rest of the data can arbitrarily skew the desired solution. This usually deteriorates LDA’s performance dramatically, thus preventing it from mass deployment in real-world applications. To handle this problem, we propose an effective distance metric learning method-based LDA, namely, Euler LDA-L21 (e-LDA-L21). e-LDA-L21 is carried out in two stages, in which each image is mapped into a complex space by Euler transform in the first stage and the ℓ2,1 -norm is adopted as the distance metric in the second stage. This not only reveals nonlinear features but also exploits the geometric structure of data. To solve e-LDA-L21 efficiently, we propose an iterative algorithm, which is a closed-form solution at each iteration with convergence guaranteed. Finally, we extend e-LDA-L21 to Euler 2DLDA-L21 (e-2DLDA-L21) which further exploits the spatial information embedded in image pixels. Experimental results on several face databases demonstrate its superiority over the state-of-the-art algorithms.
U2 - 10.1109/TIP.2018.2859589
DO - 10.1109/TIP.2018.2859589
M3 - Journal article
VL - 27
SP - 5668
EP - 5682
JO - IEEE Transactions on Image Processing
JF - IEEE Transactions on Image Processing
SN - 1057-7149
IS - 11
ER -