The composition and dynamics of the gastrointestinal bacterial communities in birds is determined by both host-specific and environmental exposure factors yet these are poorly understood. We selected the zebra finch, Taeniopygia guttata, as the host species to examine the diversity and temporal stability of the faecal microflora in a bird, owing to its importance as a model organism in avian ecology, neuroscience and evolution studies. The stability of the gut bacterial community of individual male and female zebra finches was assessed through repeat faecal sampling via culture and temperature gradient gel electrophoresis and partial sequencing of PCR-amplified eubacterial 16S rRNA gene products. Nineteen bacterial genera were detected across all samples (n = 99), with each bird carrying on average six operational taxonomic units. Using a novel statistical approach, we showed that bacterial assemblages and community richness varied between individual birds but remained stable over time within individuals. Neither the composition nor richness of bacterial communities differed significantly between the sexes. Our results show that zebra finches housed together under controlled conditions show consistent variation between individuals in their gut microflora that is not attributable to differences in host exposure to environmental microbial sources. Future studies could usefully explore the origin of this individual-specific variation and its consequences for host fitness and sexual selection.