Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Dynamic Network Data Envelopment Analysis with a sequential structure and behavioural-causal analysis
T2 - application to the Chinese banking industry
AU - Fukuyama, Hirofumi
AU - Tsionas, Mike
AU - Tan, Yong
PY - 2023/6/16
Y1 - 2023/6/16
N2 - The current study contributes to the literature in efficiency analysis in two ways: 1) we build on the existing studies in Dynamic Network Data Envelopment Analysis (DNDEA) by proposing a sequential structure incorporating dual-role characteristics of the production factors; 2) we initiate the efforts to complement the proposal of our innovative sequential DNDEA through a behavioural-causal analysis. The proposal of this statistical analysis is very important considering it does not only validate the proposal of the efficiency analysis but also our practice can be generalized to the future studies dealing with designing innovative production process. Finally, we apply these two different analyses to the banking industry. Using a sample of 43 Chinese commercial banks including five different ownership types (state-owned, joint-stock, city, rural, and foreign banks) between 2010 and 2018, we find that the inefficiency level is around 0.14, although slight volatility has been observed. We find that the highest efficiency is dominated by state-owned banks, and although foreign banks are less efficient than joint-stock banks, they are more efficient than city banks. Finally, we find that rural banks have the highest inefficiency.
AB - The current study contributes to the literature in efficiency analysis in two ways: 1) we build on the existing studies in Dynamic Network Data Envelopment Analysis (DNDEA) by proposing a sequential structure incorporating dual-role characteristics of the production factors; 2) we initiate the efforts to complement the proposal of our innovative sequential DNDEA through a behavioural-causal analysis. The proposal of this statistical analysis is very important considering it does not only validate the proposal of the efficiency analysis but also our practice can be generalized to the future studies dealing with designing innovative production process. Finally, we apply these two different analyses to the banking industry. Using a sample of 43 Chinese commercial banks including five different ownership types (state-owned, joint-stock, city, rural, and foreign banks) between 2010 and 2018, we find that the inefficiency level is around 0.14, although slight volatility has been observed. We find that the highest efficiency is dominated by state-owned banks, and although foreign banks are less efficient than joint-stock banks, they are more efficient than city banks. Finally, we find that rural banks have the highest inefficiency.
KW - Information Systems and Management
KW - Management Science and Operations Research
KW - Modeling and Simulation
KW - General Computer Science
KW - Industrial and Manufacturing Engineering
U2 - 10.1016/j.ejor.2022.09.028
DO - 10.1016/j.ejor.2022.09.028
M3 - Journal article
VL - 307
SP - 1360
EP - 1373
JO - European Journal of Operational Research
JF - European Journal of Operational Research
SN - 0377-2217
IS - 3
ER -