Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Ecological impacts of single-axis photovoltaic solar energy with periodic mowing on microclimate and vegetation
AU - Li, Yudi
AU - Armstrong, Alona
AU - Simmons, Christopher
AU - Krasner, Noah Z.
AU - Hernandez, Rebecca R.
PY - 2025/2/6
Y1 - 2025/2/6
N2 - Large, ground-mounted photovoltaic solar projects (GPVs) are expanding rapidly worldwide, driven by their essential role in climate change mitigation and the transition to a low-carbon economy. With the global market for tracking systems projected to increase annually by 32% in capacity by 2050, understanding their ecological impacts, including those from their operation and management (O&M), is critical but understudied. This study presents the first comprehensive evaluation of microclimate and vegetation mosaics within a conventional, single-axis GPV managed through regular mowing. In the state of California’s Great Central Valley (United States), we developed a novel experimental framework to characterize five distinct “micro-patches” that capture the full spectrum of microclimate and vegetation zones modulated by the tracking PV system and O&M. Over a 12-month period, we monitored nine above- and belowground microclimate variables and 16 plant ecology metrics across these micro-patches. Beneath PV panels, photosynthetically active radiation decreased by 89%, and wind speed slowed by 46%, while open spaces within the GPV footprint exhibited greater soil surface temperatures (+2.4°C) and accelerated moisture loss (+8.5%) during drought periods. Furthermore, PV panel rotation influenced shading patterns throughout the day, creating temporal variability in air temperature and vapor pressure deficit. Plant surveys identified 37 species, 86% of which were non-native. Marked differences in vegetation across micro-patches indicated that GPVs drive changes in plant community composition, structure, and productivity. Compared to open spaces, vegetation near and within the PV array footprint displayed greater species richness (+8.4%), taller maximum height (+21%), reduced coverage of sun-loving plants (−71%), and less dead biomass accumulation (−26%), from shade-driven effects. These findings suggest the consideration of micro-patch-specific maintenance strategies and nature-based solutions to control invasive, exotic plant species, conferring opportunities to enhance operational, ecological, and socioeconomic sustainability while redressing the twin crises of climate change and biodiversity loss simultaneously.
AB - Large, ground-mounted photovoltaic solar projects (GPVs) are expanding rapidly worldwide, driven by their essential role in climate change mitigation and the transition to a low-carbon economy. With the global market for tracking systems projected to increase annually by 32% in capacity by 2050, understanding their ecological impacts, including those from their operation and management (O&M), is critical but understudied. This study presents the first comprehensive evaluation of microclimate and vegetation mosaics within a conventional, single-axis GPV managed through regular mowing. In the state of California’s Great Central Valley (United States), we developed a novel experimental framework to characterize five distinct “micro-patches” that capture the full spectrum of microclimate and vegetation zones modulated by the tracking PV system and O&M. Over a 12-month period, we monitored nine above- and belowground microclimate variables and 16 plant ecology metrics across these micro-patches. Beneath PV panels, photosynthetically active radiation decreased by 89%, and wind speed slowed by 46%, while open spaces within the GPV footprint exhibited greater soil surface temperatures (+2.4°C) and accelerated moisture loss (+8.5%) during drought periods. Furthermore, PV panel rotation influenced shading patterns throughout the day, creating temporal variability in air temperature and vapor pressure deficit. Plant surveys identified 37 species, 86% of which were non-native. Marked differences in vegetation across micro-patches indicated that GPVs drive changes in plant community composition, structure, and productivity. Compared to open spaces, vegetation near and within the PV array footprint displayed greater species richness (+8.4%), taller maximum height (+21%), reduced coverage of sun-loving plants (−71%), and less dead biomass accumulation (−26%), from shade-driven effects. These findings suggest the consideration of micro-patch-specific maintenance strategies and nature-based solutions to control invasive, exotic plant species, conferring opportunities to enhance operational, ecological, and socioeconomic sustainability while redressing the twin crises of climate change and biodiversity loss simultaneously.
KW - single-axis photovoltaic
KW - soil temperature
KW - soil moisture
KW - invasion ecology
KW - microclimate
KW - best management practices
KW - vegetation
KW - solar tracking system
U2 - 10.3389/frsus.2025.1497256
DO - 10.3389/frsus.2025.1497256
M3 - Journal article
VL - 6
JO - Frontiers in Sustainability
JF - Frontiers in Sustainability
SN - 2673-4524
M1 - 1497256
ER -