Rights statement: ©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 1.65 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Edge-Computing-Based Channel Allocation for Deadline-Driven IoT Networks
AU - Gao, Weifeng
AU - Zhao, Zhiwei
AU - Yu, Zhengxin
AU - Min, Geyong
AU - Yang, Minghang
AU - Huang, Wenjie
N1 - ©2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2020/10/31
Y1 - 2020/10/31
N2 - Multichannel communication is an important means to improve the reliability of low-power Internet-of-Things (IoT) networks. Typically, data transmissions in IoT networks are often required to be delivered before a given deadline, making deadline-driven channel allocation an essential task. The existing works on time-division multiple access often fail to establish channel schedules to meet the deadline requirement, as they often assume that transmissions can be successful within one transmission slot. Besides, the allocation and link estimation incur considerable overhead for the IoT nodes. In this article, we propose an edge-based channel allocation (ECA) for unreliable IoT networks. In ECA, we explicitly consider the impact of allocation sequences and employ a recurrent-neural-network-based channel estimation scheme. We utilize link quality and retransmission opportunities to maximize the packet delivery ratio before deadline. The allocation algorithms are executed on edge servers such that: 1) the channel allocation can be updated more frequently to deal with the wireless dynamics; 2) the allocation results can be obtained in real time; and 3) channel estimation can be more accurate. Extensive evaluation results show that ECA can significantly improve the reliability of deadline-driven IoT networks.
AB - Multichannel communication is an important means to improve the reliability of low-power Internet-of-Things (IoT) networks. Typically, data transmissions in IoT networks are often required to be delivered before a given deadline, making deadline-driven channel allocation an essential task. The existing works on time-division multiple access often fail to establish channel schedules to meet the deadline requirement, as they often assume that transmissions can be successful within one transmission slot. Besides, the allocation and link estimation incur considerable overhead for the IoT nodes. In this article, we propose an edge-based channel allocation (ECA) for unreliable IoT networks. In ECA, we explicitly consider the impact of allocation sequences and employ a recurrent-neural-network-based channel estimation scheme. We utilize link quality and retransmission opportunities to maximize the packet delivery ratio before deadline. The allocation algorithms are executed on edge servers such that: 1) the channel allocation can be updated more frequently to deal with the wireless dynamics; 2) the allocation results can be obtained in real time; and 3) channel estimation can be more accurate. Extensive evaluation results show that ECA can significantly improve the reliability of deadline-driven IoT networks.
M3 - Journal article
VL - 16
SP - 6693
EP - 6702
JO - IEEE Transactions on Industrial Informatics
JF - IEEE Transactions on Industrial Informatics
SN - 1551-3203
IS - 10
ER -