Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Effect of Ceria Addition to Na2O-ZrO2 Catalytic Mixtures on Lignin Waste Ex-Situ Pyrolysis
AU - Yeardley, Adam
AU - Bagnato, Giuseppe
AU - Sanna, Aimaro
PY - 2021/2/5
Y1 - 2021/2/5
N2 - Waste lignin is a potential source of renewable fuels and other chemical precursors under catalytic pyrolysis. For this purpose, four mixed metal oxide catalytic mixtures (Cat) derived from Na 2CO 3, CeO 2 and ZrO 2 were synthesised in varying compositions and utilised in a fixed bed reactor for catalytic vapour upgrading of Etek lignin pyrolysis products at 600 °C. The catalytic mixtures were analysed and characterised using XRD analysis, whilst pyrolysis products were analysed for distribution of products using FTIR, GC-MS and EA. Substantial phenolic content (20 wt%) was obtained when using equimolar catalytic mixture A (Cat_A), however the majority of these phenols were guaiacol derivatives, suggesting the catalytic mixture employed did not favour deep demethoxylation. Despite this, addition of 40-50% ceria to NaZrO 2 resulted in a remarkable reduction of coke to 4 wt%, compared to ~9 wt% of NaZrO 2. CeO 2 content higher than 50% favoured the increase in conversion of the holo-cellulose fraction, enriching the bio-oil in aldehydes, ketones and cyclopentanones. Of the catalytic mixtures studied, equimolar metal oxides content (Cat_A) appears to showcase the optimal characteristics for phenolics production and coking reduction.
AB - Waste lignin is a potential source of renewable fuels and other chemical precursors under catalytic pyrolysis. For this purpose, four mixed metal oxide catalytic mixtures (Cat) derived from Na 2CO 3, CeO 2 and ZrO 2 were synthesised in varying compositions and utilised in a fixed bed reactor for catalytic vapour upgrading of Etek lignin pyrolysis products at 600 °C. The catalytic mixtures were analysed and characterised using XRD analysis, whilst pyrolysis products were analysed for distribution of products using FTIR, GC-MS and EA. Substantial phenolic content (20 wt%) was obtained when using equimolar catalytic mixture A (Cat_A), however the majority of these phenols were guaiacol derivatives, suggesting the catalytic mixture employed did not favour deep demethoxylation. Despite this, addition of 40-50% ceria to NaZrO 2 resulted in a remarkable reduction of coke to 4 wt%, compared to ~9 wt% of NaZrO 2. CeO 2 content higher than 50% favoured the increase in conversion of the holo-cellulose fraction, enriching the bio-oil in aldehydes, ketones and cyclopentanones. Of the catalytic mixtures studied, equimolar metal oxides content (Cat_A) appears to showcase the optimal characteristics for phenolics production and coking reduction.
KW - Bioethanol waste
KW - Catalysis
KW - Ceria
KW - Lignin
KW - Metal oxides
KW - Phenol
KW - Pyrolysis
KW - ZrO2
U2 - 10.3390/molecules26040827
DO - 10.3390/molecules26040827
M3 - Journal article
C2 - 33562554
VL - 26
JO - Molecules
JF - Molecules
SN - 1420-3049
IS - 4
M1 - 827
ER -