Rights statement: This is the author’s version of a work that was accepted for publication in Renewable and Sustainable Energy Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Renewable and Sustainable Energy Reviews, 82, (1), 2018 DOI: 10.1016/j.rser.2017.07.016
Accepted author manuscript, 500 KB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Effect of particle size on the viscosity of nanofluids
T2 - a review
AU - Dogacan Koca, Halil
AU - Doganay, Serkan
AU - Turgut, Alpaslan
AU - Tavman, Ismail Hakki
AU - Rahman, Saidur
AU - Mahbubul, Islam Mohammed
N1 - This is the author’s version of a work that was accepted for publication in Renewable and Sustainable Energy Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Renewable and Sustainable Energy Reviews, 82, (1), 2018 DOI: 10.1016/j.rser.2017.07.016
PY - 2018/2
Y1 - 2018/2
N2 - Nanofluids are potential new generation heat transfer fluids, which have been investigated meticulously, in recent years. Thermophysical properties of these fluids have significant influence on their heat transfer characteristics. Viscosity is one of the most important thermophysical properties that depends on various parameters. Size of the particles used in nanofluids is one of these effecting parameters. In this work, experimental studies considering the particle size effect on the viscosity of the nanofluid have been reviewed. Firstly, comparison of nanofluid and surfactant type, production and measurement methods were considered. Viscosity results of selected studies were evaluated in view of the parameters such as particle size, temperature and concentration. Furthermore, effective viscosity models of nanofluids, which include particle size as a parameter were discussed. The results indicate that there is a discrepancy about the effect of particle size on the viscosity of nanofluids. Moreover, it is observed from the evaluated data that the relative viscosity variation can be almost 40% either upwards or downwards by only altering the particle size.
AB - Nanofluids are potential new generation heat transfer fluids, which have been investigated meticulously, in recent years. Thermophysical properties of these fluids have significant influence on their heat transfer characteristics. Viscosity is one of the most important thermophysical properties that depends on various parameters. Size of the particles used in nanofluids is one of these effecting parameters. In this work, experimental studies considering the particle size effect on the viscosity of the nanofluid have been reviewed. Firstly, comparison of nanofluid and surfactant type, production and measurement methods were considered. Viscosity results of selected studies were evaluated in view of the parameters such as particle size, temperature and concentration. Furthermore, effective viscosity models of nanofluids, which include particle size as a parameter were discussed. The results indicate that there is a discrepancy about the effect of particle size on the viscosity of nanofluids. Moreover, it is observed from the evaluated data that the relative viscosity variation can be almost 40% either upwards or downwards by only altering the particle size.
KW - Nanofluid
KW - Nanoparticles
KW - Size effect
KW - Viscosity
KW - Surfactant
KW - Temperature
U2 - 10.1016/j.rser.2017.07.016
DO - 10.1016/j.rser.2017.07.016
M3 - Journal article
VL - 82
SP - 1664
EP - 1674
JO - Renewable and Sustainable Energy Reviews
JF - Renewable and Sustainable Energy Reviews
SN - 1364-0321
IS - 1
ER -