Accepted author manuscript, 307 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Efficiency gains in least squares estimation: A new approach
AU - Papadopoulos, Alecos
AU - Tsionas, Mike G.
PY - 2022/1/2
Y1 - 2022/1/2
N2 - In pursuit of efficiency, we propose a new way to construct least squares estimators, as the minimizers of an augmented objective function that takes explicitly into account the variability of the error term and the resulting uncertainty, as well as the possible existence of heteroskedasticity. We initially derive an infeasible estimator which we then approximate using Ordinary Least Squares (OLS) residuals from a first-step regression to obtain the feasible “HOLS” estimator. This estimator has negligible bias, is consistent and outperforms OLS in terms of finite-sample Mean Squared Error, but also in terms of asymptotic efficiency, under all skedastic scenarios, including homoskedasticity. Analogous efficiency gains are obtained for the case of Instrumental Variables estimation. Theoretical results are accompanied by simulations that support them.
AB - In pursuit of efficiency, we propose a new way to construct least squares estimators, as the minimizers of an augmented objective function that takes explicitly into account the variability of the error term and the resulting uncertainty, as well as the possible existence of heteroskedasticity. We initially derive an infeasible estimator which we then approximate using Ordinary Least Squares (OLS) residuals from a first-step regression to obtain the feasible “HOLS” estimator. This estimator has negligible bias, is consistent and outperforms OLS in terms of finite-sample Mean Squared Error, but also in terms of asymptotic efficiency, under all skedastic scenarios, including homoskedasticity. Analogous efficiency gains are obtained for the case of Instrumental Variables estimation. Theoretical results are accompanied by simulations that support them.
KW - Economics and Econometrics
U2 - 10.1080/07474938.2020.1824731
DO - 10.1080/07474938.2020.1824731
M3 - Journal article
VL - 41
SP - 51
EP - 74
JO - Econometric Reviews
JF - Econometric Reviews
SN - 0747-4938
IS - 1
ER -