An analytical method is developed for the bending response of annular sector Mindlin plates with two radial edges simply supported, and exact solutions are presented in the form of Levy-type series. Several different boundary conditions on the two circular edges are considered, viz. simply supported-simply supported, clamped-clamped and free-free. Numerical results for the case of uniform loading are presented to indicate the effect of shear deformation on the deflections and stress resultants at various points in the plate. Twisting stress couple and transverse shear stress resultant distributions along and near the edges of the plate are illustrated graphically, and the principal differences between the results predicted by Mindlin's plate theory and classical thin plate theory are discussed in detail. Results obtained with the present exact analysis may serve as references for approximate solutions and, especially, as a ‘shear locking’ test for thick plate finite element analysis.