Rights statement: This is an Accepted Manuscript of an article published by Taylor & Francis in Critical Reviews in Environmental Science and Technology on 24/06/2020, available online: https://www.tandfonline.com/doi/full/10.1080/10643389.2020.1780102
Accepted author manuscript, 2.05 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Engineered/designer hierarchical porous carbon materials for organic pollutant removal from water and wastewater
T2 - A critical review
AU - Zhang, Mengxue
AU - Igalavithana, Avanthi Deshani
AU - Xu, Liheng
AU - Sarkar, Binoy
AU - Hou, Deyi
AU - Zhang, Ming
AU - Bhatnagar, Amit
AU - Cho, Won Chul
AU - Ok, Yong Sik
N1 - This is an Accepted Manuscript of an article published by Taylor & Francis in Critical Reviews in Environmental Science and Technology on 24/06/2020, available online: https://www.tandfonline.com/doi/full/10.1080/10643389.2020.1780102
PY - 2021/10/31
Y1 - 2021/10/31
N2 - Hierarchical porous carbon (HPC) materials have found advanced applications in energy storage, adsorption, and catalysis in recent years. The HPC can be synthesized from a vast range of inexpensive carbon precursors, and contain unique structural features, such as nano-scale dimension, high porosity, high surface area, and tunable pore surfaces. These materials hold immense potential for removing contaminants from water and wastewater. However, this area is severely under-explored yet. In this review, we have discussed the recent advances of synthesis, modification, and application of HPC for the removal of pollutants from water, especially focusing on organic pollutants. Owing to their intrinsic hydrophobic nature and unique interconnected porous structure, HPC demonstrates a high affinity to hydrophobic organic contaminants, which can be enhanced many folds by target-specific chemical activation. Successful high-performance removal of contaminants by pristine and modified HPC includes plastic-derived (e.g. bisphenol A), pharmaceutical (e.g. antibiotics), dye (e.g. methylene blue) and pesticide micro-pollutants. Future research is warranted to find optimal and effective HPC synthesis and modification methods for further improving their ability to remove aqueous organic contaminants as a low-cost and energy-inexpensive remediation technology.
AB - Hierarchical porous carbon (HPC) materials have found advanced applications in energy storage, adsorption, and catalysis in recent years. The HPC can be synthesized from a vast range of inexpensive carbon precursors, and contain unique structural features, such as nano-scale dimension, high porosity, high surface area, and tunable pore surfaces. These materials hold immense potential for removing contaminants from water and wastewater. However, this area is severely under-explored yet. In this review, we have discussed the recent advances of synthesis, modification, and application of HPC for the removal of pollutants from water, especially focusing on organic pollutants. Owing to their intrinsic hydrophobic nature and unique interconnected porous structure, HPC demonstrates a high affinity to hydrophobic organic contaminants, which can be enhanced many folds by target-specific chemical activation. Successful high-performance removal of contaminants by pristine and modified HPC includes plastic-derived (e.g. bisphenol A), pharmaceutical (e.g. antibiotics), dye (e.g. methylene blue) and pesticide micro-pollutants. Future research is warranted to find optimal and effective HPC synthesis and modification methods for further improving their ability to remove aqueous organic contaminants as a low-cost and energy-inexpensive remediation technology.
KW - Green and sustainable remediation
KW - clean water and sanitation
KW - electrode material
U2 - 10.1080/10643389.2020.1780102
DO - 10.1080/10643389.2020.1780102
M3 - Journal article
VL - 51
SP - 2295
EP - 2328
JO - Critical Reviews in Environmental Science and Technology
JF - Critical Reviews in Environmental Science and Technology
SN - 1064-3389
IS - 20
ER -