Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Enhancing DDoS detection in SDIoT through effective feature selection with SMOTE-ENN
AU - Behera, Arati
AU - Sagar Sahoo, Kshira
AU - Kumara Mishra, Tapas
AU - Nayyar, Anand
AU - Bilal, Muhammad
A2 - Alex, Suja A
PY - 2024/10/17
Y1 - 2024/10/17
N2 - Internet of things (IoT) facilitates a variety of heterogeneous devices to be enabled with network connectivity via various network architectures to gather and exchange real-time information. On the other hand, the rise of IoT creates Distributed Denial of Services (DDoS) like security threats. The recent advancement of Software Defined-Internet of Things (SDIoT) architecture can provide better security solutions compared to the conventional networking approaches. Moreover, limited computing resources and heterogeneous network protocols are major challenges in the SDIoT ecosystem. Given these circumstances, it is essential to design a low-cost DDoS attack classifier. The current study aims to employ an improved feature selection (FS) technique which determines the most relevant features that can improve the detection rate and reduce the training time. At first, to overcome the data imbalance problem, Edited Nearest Neighbor-based Synthetic Minority Oversampling (SMOTE-ENN) was exploited. The study proposes SFMI, an FS method that combines Sequential Feature Selection (SFE) and Mutual Information (MI) techniques. The top k common features were extracted from the nominated features based on SFE and MI. Further, Principal component analysis (PCA) is employed to address multicollinearity issues in the dataset. Comprehensive experiments have been conducted on two benchmark datasets such as the KDDCup99, CIC IoT-2023 datasets. For classification purposes, Decision Tree, K-Nearest Neighbor, Gaussian Naive Bayes, Random Forest (RF), and Multilayer Perceptron classifiers were employed. The experimental results quantitatively demonstrate that the proposed SMOTE-ENN+SFMI+PCA with RF classifier achieves 99.97% accuracy and 99.39% precision with 10 features.
AB - Internet of things (IoT) facilitates a variety of heterogeneous devices to be enabled with network connectivity via various network architectures to gather and exchange real-time information. On the other hand, the rise of IoT creates Distributed Denial of Services (DDoS) like security threats. The recent advancement of Software Defined-Internet of Things (SDIoT) architecture can provide better security solutions compared to the conventional networking approaches. Moreover, limited computing resources and heterogeneous network protocols are major challenges in the SDIoT ecosystem. Given these circumstances, it is essential to design a low-cost DDoS attack classifier. The current study aims to employ an improved feature selection (FS) technique which determines the most relevant features that can improve the detection rate and reduce the training time. At first, to overcome the data imbalance problem, Edited Nearest Neighbor-based Synthetic Minority Oversampling (SMOTE-ENN) was exploited. The study proposes SFMI, an FS method that combines Sequential Feature Selection (SFE) and Mutual Information (MI) techniques. The top k common features were extracted from the nominated features based on SFE and MI. Further, Principal component analysis (PCA) is employed to address multicollinearity issues in the dataset. Comprehensive experiments have been conducted on two benchmark datasets such as the KDDCup99, CIC IoT-2023 datasets. For classification purposes, Decision Tree, K-Nearest Neighbor, Gaussian Naive Bayes, Random Forest (RF), and Multilayer Perceptron classifiers were employed. The experimental results quantitatively demonstrate that the proposed SMOTE-ENN+SFMI+PCA with RF classifier achieves 99.97% accuracy and 99.39% precision with 10 features.
U2 - 10.1371/journal.pone.0309682
DO - 10.1371/journal.pone.0309682
M3 - Journal article
VL - 19
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 10
M1 - e0309682
ER -