Rights statement: ©2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 345 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Enhancing Video QoE Over High-speed Train Using Segment-based Prefetching and Caching
AU - Cao, Yue
AU - Wang, Ning
AU - Wu, Celimuge Wu
AU - Zhang, Xu
AU - Suthaputchakun, Chakkaphong
N1 - ©2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - The big picture of 5G will bring a range of new unique service capabilities, where ensuring Quality of Experience (QoE) continuity in challenging situations such as high mobility, e.g. on-board User Equipments (UEs) in High Speed Train (HST) is one of sharp killer applications. In this paper, we propose a Mobile Edge Computing (MEC) driven solution to improve QoE, for UEs in the HST with perceived Dynamic Adaptive Streaming over HTTP (DASH) video demands. Considering the challenging wireless communication conditioning (e.g., path loss and Doppler Effect due to high mobility) between HST and Base Station (BS) along the railway for enabling progress and seamless video consuming, the case study shows the benefit of MEC functions mainly from content prefetching and complementarily from content caching, over benchmark solution where UEs solely download video segments through challenging wireless channel.
AB - The big picture of 5G will bring a range of new unique service capabilities, where ensuring Quality of Experience (QoE) continuity in challenging situations such as high mobility, e.g. on-board User Equipments (UEs) in High Speed Train (HST) is one of sharp killer applications. In this paper, we propose a Mobile Edge Computing (MEC) driven solution to improve QoE, for UEs in the HST with perceived Dynamic Adaptive Streaming over HTTP (DASH) video demands. Considering the challenging wireless communication conditioning (e.g., path loss and Doppler Effect due to high mobility) between HST and Base Station (BS) along the railway for enabling progress and seamless video consuming, the case study shows the benefit of MEC functions mainly from content prefetching and complementarily from content caching, over benchmark solution where UEs solely download video segments through challenging wireless channel.
U2 - 10.1109/mmul.2019.2905531
DO - 10.1109/mmul.2019.2905531
M3 - Journal article
VL - 26
SP - 55
EP - 66
JO - IEEE MultiMedia
JF - IEEE MultiMedia
SN - 1070-986X
IS - 4
ER -