Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Entropic risk for turn-based stochastic games
AU - Baier, Christel
AU - Chatterjee, Krishnendu
AU - Meggendorfer, Tobias
AU - Piribauer, Jakob
PY - 2024/12/31
Y1 - 2024/12/31
N2 - Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. Furthermore, an approximation algorithm for the optimal value of ERisk is provided.
AB - Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. Furthermore, an approximation algorithm for the optimal value of ERisk is provided.
U2 - 10.1016/j.ic.2024.105214
DO - 10.1016/j.ic.2024.105214
M3 - Journal article
VL - 301
JO - Information and Computation
JF - Information and Computation
M1 - 105214
ER -