The urgency to mitigate the effects of climate change necessitates an unprecedented global deployment of offshore renewable-energy technologies 
mainly including offshore wind, tidal stream, wave energy, and floating solar photovoltaic. To achieve the global energy demand for terawatt-hours, the infrastructure for such technologies will require a large spatial footprint. Accommodating this footprint will require rapid landscape evolution, ideally within two decades. For instance, the United Kingdom has committed to deploying 50 GW of offshore wind by 2030 with 90--110 GW by 2050, which is equivalent to four times and ten times more than the 2022 capacity, respectively. If all were 15-MW turbines spaced 1.5 km apart, 50 GW would require 7,500 km2 and 110 GW would require 16,500 km2. This review paper aims to anticipate environmental impacts stemming from the large-scale deployment of offshore renewable energy. These impacts have been categorised into three broad types based on the region (i.e., atmospheric, hydrodynamic, ecological). We synthesise our results into a table classifying whether the impacts are positive, negative, negligible, or unknown; whether the impact is instantaneous or lagged over time; and whether the impacts occur when the offshore infrastructure is being constructed, operating or during decommissioning. Our table benefits those studying the marine ecosystem before any project is installed to help assess the baseline characteristics to be considered in order to identify and then quantify possible future impacts.