Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Enzyme Biocatalysis for Sustainability Applications in Reactors
T2 - A Systematic Review
AU - Chook, Kay Yi
AU - Aroua, Mohamed Kheireddine
AU - Gew, Lai Ti
PY - 2023/7/7
Y1 - 2023/7/7
N2 - Enzyme biocatalysis is well known for its biodegradability and environmentally friendly conditions. Its novel properties such as high reaction selectivity and mild reaction conditions prove that it is a promising alternative that can overcome the global resource scarcity of the conventional chemical catalysts that are of a nonrenewable source. In this study, we documented the advancements and breakthroughs in emerging biocatalysis reactor technologies spanning over a decade. We aim to encapsulate the remarkable progress and innovations witnessed within this dynamic field. Thus, we reviewed 48 articles related to enzyme biocatalysis in the production of glycerides using reactors. The reaction parameters using a biocatalysis route were reviewed systematically and discussed in our study. In the biocatalysis transformation, the processes mainly focus on the conversion of raw material into product. In the optimization of biocatalysis, temperature and residence time parameters have been thoroughly researched in order to maximize the productivity of the enzyme activity. In the selection of reactors, the type of reactor and its agitator play a vital role in enzyme activity. We anticipate that the greenness of biocatalysis transformation could be improved if the enzymes in waste streams could be converted from another reaction to functional products. This work may serve as a stepping stone for the biocatalysis industry, acting as a precursor for industries or individuals interested in exploring this evergreen field.
AB - Enzyme biocatalysis is well known for its biodegradability and environmentally friendly conditions. Its novel properties such as high reaction selectivity and mild reaction conditions prove that it is a promising alternative that can overcome the global resource scarcity of the conventional chemical catalysts that are of a nonrenewable source. In this study, we documented the advancements and breakthroughs in emerging biocatalysis reactor technologies spanning over a decade. We aim to encapsulate the remarkable progress and innovations witnessed within this dynamic field. Thus, we reviewed 48 articles related to enzyme biocatalysis in the production of glycerides using reactors. The reaction parameters using a biocatalysis route were reviewed systematically and discussed in our study. In the biocatalysis transformation, the processes mainly focus on the conversion of raw material into product. In the optimization of biocatalysis, temperature and residence time parameters have been thoroughly researched in order to maximize the productivity of the enzyme activity. In the selection of reactors, the type of reactor and its agitator play a vital role in enzyme activity. We anticipate that the greenness of biocatalysis transformation could be improved if the enzymes in waste streams could be converted from another reaction to functional products. This work may serve as a stepping stone for the biocatalysis industry, acting as a precursor for industries or individuals interested in exploring this evergreen field.
KW - Industrial and Manufacturing Engineering
KW - General Chemical Engineering
KW - General Chemistry
U2 - 10.1021/acs.iecr.3c00832
DO - 10.1021/acs.iecr.3c00832
M3 - Journal article
JO - Industrial and Engineering Chemistry Research
JF - Industrial and Engineering Chemistry Research
SN - 0888-5885
ER -