Home > Research > Publications & Outputs > Escitalopram alters local expression of noncano...

Electronic data

Links

Text available via DOI:

View graph of relations

Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. / Piwowarczyk-Nowak, Aneta; Pałasz, Artur; Suszka-Świtek, Aleksandra et al.
In: Pharmacological reports : PR, Vol. 74, No. 4, 31.08.2022, p. 637-653.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Piwowarczyk-Nowak, A, Pałasz, A, Suszka-Świtek, A, Della Vecchia, A, Grajoszek, A, Krzystanek, M & Worthington, JJ 2022, 'Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling', Pharmacological reports : PR, vol. 74, no. 4, pp. 637-653. https://doi.org/10.1007/s43440-022-00374-z

APA

Piwowarczyk-Nowak, A., Pałasz, A., Suszka-Świtek, A., Della Vecchia, A., Grajoszek, A., Krzystanek, M., & Worthington, J. J. (2022). Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacological reports : PR, 74(4), 637-653. https://doi.org/10.1007/s43440-022-00374-z

Vancouver

Piwowarczyk-Nowak A, Pałasz A, Suszka-Świtek A, Della Vecchia A, Grajoszek A, Krzystanek M et al. Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. Pharmacological reports : PR. 2022 Aug 31;74(4):637-653. Epub 2022 Jun 2. doi: 10.1007/s43440-022-00374-z

Author

Piwowarczyk-Nowak, Aneta ; Pałasz, Artur ; Suszka-Świtek, Aleksandra et al. / Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling. In: Pharmacological reports : PR. 2022 ; Vol. 74, No. 4. pp. 637-653.

Bibtex

@article{3c2cc5c11187428da89f85363dd03c27,
title = "Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling",
abstract = "BackgroundNeuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade.MethodsStudies were carried out on adult, male Sprague–Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression.ResultsAcute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum.ConclusionsThe pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.",
keywords = "Escitalopram, Neuropeptide S, Neuromedin U, NPSR, NMUR2, Anxiety",
author = "Aneta Piwowarczyk-Nowak and Artur Pa{\l}asz and Aleksandra Suszka-{\'S}witek and {Della Vecchia}, Alessandra and Aniela Grajoszek and Marek Krzystanek and Worthington, {John J.}",
note = "The final publication is available at Springer via http://dx.doi.org/10.1007/s43440-022-00374-z",
year = "2022",
month = aug,
day = "31",
doi = "10.1007/s43440-022-00374-z",
language = "English",
volume = "74",
pages = "637--653",
journal = "Pharmacological reports : PR",
issn = "1734-1140",
publisher = "Polish Academy of Sciences Publishing House",
number = "4",

}

RIS

TY - JOUR

T1 - Escitalopram alters local expression of noncanonical stress-related neuropeptides in the rat brain via NPS receptor signaling

AU - Piwowarczyk-Nowak, Aneta

AU - Pałasz, Artur

AU - Suszka-Świtek, Aleksandra

AU - Della Vecchia, Alessandra

AU - Grajoszek, Aniela

AU - Krzystanek, Marek

AU - Worthington, John J.

N1 - The final publication is available at Springer via http://dx.doi.org/10.1007/s43440-022-00374-z

PY - 2022/8/31

Y1 - 2022/8/31

N2 - BackgroundNeuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade.MethodsStudies were carried out on adult, male Sprague–Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression.ResultsAcute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum.ConclusionsThe pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.

AB - BackgroundNeuropeptide S (NPS) is a multifunctional regulatory factor that exhibits a potent anxiolytic activity in animal models. However, there are no reports dealing with the potential molecular relationships between the anxiolytic activity of selective serotonin reuptake inhibitors (SSRIs) and NPS signaling, especially in the context of novel stress-related neuropeptides action. The present work therefore focused on gene expression of novel stress neuropeptides in the rat brain after acute treatment with escitalopram and in combination with neuropeptide S receptor (NPSR) blockade.MethodsStudies were carried out on adult, male Sprague–Dawley rats that were divided into five groups: animals injected with saline (control) and experimental rats treated with escitalopram (at single dose 10 mg/kg daily), escitalopram and SHA-68, a selective NPSR antagonist (at a single dose of 40 mg/kg), SHA-68 alone and corresponding vehicle (solvent SHA-68) control. To measure anxiety-like behavior and locomotor activity the open field test was performed. All individuals were killed under anaesthesia and the whole brain was excised. Total mRNA was isolated from homogenized samples of the amygdala, hippocampus, hypothalamus, thalamus, cerebellum, and brainstem. Real-time PCR was used for estimation of related NPS, NPSR, neuromedin U (NMU), NMU receptor 2 (NMUR2) and nesfatin-1 precursor nucleobindin-2 (NUCB2) gene expression.ResultsAcute escitalopram administration affects the local expression of the examined neuropeptides mRNA in a varied manner depending on brain location. An increase in NPSR and NUCB2 mRNA expression in the hypothalamus and brainstem was abolished by SHA-68 coadministration, while NMU mRNA expression was upregulated after NPSR blockade in the hippocampus and cerebellum.ConclusionsThe pharmacological effects of escitalopram may be connected with local NPSR-related alterations in NPS/NMU/NMUR2 and nesfatin-1 gene expression at the level of selected rat brain regions. A novel alternative mode of SSRI action can be therefore cautiously proposed.

KW - Escitalopram

KW - Neuropeptide S

KW - Neuromedin U

KW - NPSR

KW - NMUR2

KW - Anxiety

U2 - 10.1007/s43440-022-00374-z

DO - 10.1007/s43440-022-00374-z

M3 - Journal article

VL - 74

SP - 637

EP - 653

JO - Pharmacological reports : PR

JF - Pharmacological reports : PR

SN - 1734-1140

IS - 4

ER -