Home > Research > Publications & Outputs > Evidence for the role of methane-derived carbon...
View graph of relations

Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web. / Trimmer, Mark; Hildrew, Alan G; Jackson, Michelle C et al.
In: Limnology and Oceanography, Vol. 54, No. 5, 09.2009, p. 1541-1547.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Trimmer, M, Hildrew, AG, Jackson, MC, Pretty, JL & Grey, J 2009, 'Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web', Limnology and Oceanography, vol. 54, no. 5, pp. 1541-1547. https://doi.org/10.4319/lo.2009.54.5.1541

APA

Trimmer, M., Hildrew, A. G., Jackson, M. C., Pretty, J. L., & Grey, J. (2009). Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web. Limnology and Oceanography, 54(5), 1541-1547. https://doi.org/10.4319/lo.2009.54.5.1541

Vancouver

Trimmer M, Hildrew AG, Jackson MC, Pretty JL, Grey J. Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web. Limnology and Oceanography. 2009 Sept;54(5):1541-1547. doi: 10.4319/lo.2009.54.5.1541

Author

Trimmer, Mark ; Hildrew, Alan G ; Jackson, Michelle C et al. / Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web. In: Limnology and Oceanography. 2009 ; Vol. 54, No. 5. pp. 1541-1547.

Bibtex

@article{0d7268e848ce417d810ae2bb3f894328,
title = "Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web",
abstract = "We measured the δ13C values of dominant primary consumers and their potential food sources in a groundwater-fed lowland river. The δ13C of most consumers, such as Gammarus and Simulium, reflected that of the dominant forms of photosynthetic production, whereas the cased larvae of two caddis flies (Agapetus and Silo) were consistently 13C depleted (mean δ13C: -41.2% and -40.4%, respectively) throughout the year. The river water was supersaturated (approximately 50 times atmospheric) with methane, reflecting both supersaturation in the groundwater and local production in fine sediments. We measured appreciable rates of methane oxidation, relative to water only controls, in the biofilms on gravel, on the caddis fly cases, and on the bottom of larger rocks. In addition, there was a marked difference in the ratio of methane-oxidizing potential to chlorophyll across those substrata. This ratio was below detection in the biofilm (i.e., no methane oxidation) on the tops of rocks, greater on the bottom of rocks, and maximal for the gravels and the caddis cases. If the caddis larvae acquire most of their carbon by grazing the tops of such rocks (where they are normally found), then they must acquire their depleted δ13C values by occasionally grazing biofilm where the ratio of methane oxidation to chlorophyll was much greater, and the most likely candidate is from their own or conspecific cases. Grazing methane-oxidizing bacteria could provide the caddis larvae with up to 30% of their carbon, which could represent a true subsidy from an ancient groundwater source.",
author = "Mark Trimmer and Hildrew, {Alan G} and Jackson, {Michelle C} and Pretty, {James L} and Jonathan Grey",
year = "2009",
month = sep,
doi = "10.4319/lo.2009.54.5.1541",
language = "English",
volume = "54",
pages = "1541--1547",
journal = "Limnology and Oceanography",
issn = "0024-3590",
publisher = "Wiley Blackwell",
number = "5",

}

RIS

TY - JOUR

T1 - Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web

AU - Trimmer, Mark

AU - Hildrew, Alan G

AU - Jackson, Michelle C

AU - Pretty, James L

AU - Grey, Jonathan

PY - 2009/9

Y1 - 2009/9

N2 - We measured the δ13C values of dominant primary consumers and their potential food sources in a groundwater-fed lowland river. The δ13C of most consumers, such as Gammarus and Simulium, reflected that of the dominant forms of photosynthetic production, whereas the cased larvae of two caddis flies (Agapetus and Silo) were consistently 13C depleted (mean δ13C: -41.2% and -40.4%, respectively) throughout the year. The river water was supersaturated (approximately 50 times atmospheric) with methane, reflecting both supersaturation in the groundwater and local production in fine sediments. We measured appreciable rates of methane oxidation, relative to water only controls, in the biofilms on gravel, on the caddis fly cases, and on the bottom of larger rocks. In addition, there was a marked difference in the ratio of methane-oxidizing potential to chlorophyll across those substrata. This ratio was below detection in the biofilm (i.e., no methane oxidation) on the tops of rocks, greater on the bottom of rocks, and maximal for the gravels and the caddis cases. If the caddis larvae acquire most of their carbon by grazing the tops of such rocks (where they are normally found), then they must acquire their depleted δ13C values by occasionally grazing biofilm where the ratio of methane oxidation to chlorophyll was much greater, and the most likely candidate is from their own or conspecific cases. Grazing methane-oxidizing bacteria could provide the caddis larvae with up to 30% of their carbon, which could represent a true subsidy from an ancient groundwater source.

AB - We measured the δ13C values of dominant primary consumers and their potential food sources in a groundwater-fed lowland river. The δ13C of most consumers, such as Gammarus and Simulium, reflected that of the dominant forms of photosynthetic production, whereas the cased larvae of two caddis flies (Agapetus and Silo) were consistently 13C depleted (mean δ13C: -41.2% and -40.4%, respectively) throughout the year. The river water was supersaturated (approximately 50 times atmospheric) with methane, reflecting both supersaturation in the groundwater and local production in fine sediments. We measured appreciable rates of methane oxidation, relative to water only controls, in the biofilms on gravel, on the caddis fly cases, and on the bottom of larger rocks. In addition, there was a marked difference in the ratio of methane-oxidizing potential to chlorophyll across those substrata. This ratio was below detection in the biofilm (i.e., no methane oxidation) on the tops of rocks, greater on the bottom of rocks, and maximal for the gravels and the caddis cases. If the caddis larvae acquire most of their carbon by grazing the tops of such rocks (where they are normally found), then they must acquire their depleted δ13C values by occasionally grazing biofilm where the ratio of methane oxidation to chlorophyll was much greater, and the most likely candidate is from their own or conspecific cases. Grazing methane-oxidizing bacteria could provide the caddis larvae with up to 30% of their carbon, which could represent a true subsidy from an ancient groundwater source.

U2 - 10.4319/lo.2009.54.5.1541

DO - 10.4319/lo.2009.54.5.1541

M3 - Journal article

VL - 54

SP - 1541

EP - 1547

JO - Limnology and Oceanography

JF - Limnology and Oceanography

SN - 0024-3590

IS - 5

ER -