Rights statement: © ACM, 2018. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in GI '18 Proceedings of the 4th International Workshop on Genetic Improvement Workshop, 2018 10.1145/3194810.3194813
Accepted author manuscript, 1.38 MB, PDF document
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Experiments in Genetic Divergence for Emergent Systems
AU - McGowan, Christopher
AU - Wild, Alexander
AU - Porter, Barry Francis
N1 - © ACM, 2018. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in GI '18 Proceedings of the 4th International Workshop on Genetic Improvement Workshop, 2018 10.1145/3194810.3194813
PY - 2018/6/2
Y1 - 2018/6/2
N2 - Emergent software systems take a step towards tackling the ever-increasing complexity of modern software, by having systems self-assemble from a library of building blocks, and then continually re-assemble themselves from alternative building blocks to learn which compositions of behaviour work best in each deployment environment. One of the key challenges in emergent systems is populating the library of building blocks, and particularly a set of alternative implementations of particular building blocks, which form the runtime search space of optimal behaviour. We present initial work in using a fusion of genetic improvement and genetic synthesis to automatically populate a divergent set of implementations of the same functionality, allowing emergent systems to explore new behavioural alternatives without human input. Our early results indicate this approach is able to successfully yield useful divergent implementations of building blocks which are more suited than any existing alternative for particular operating conditions.
AB - Emergent software systems take a step towards tackling the ever-increasing complexity of modern software, by having systems self-assemble from a library of building blocks, and then continually re-assemble themselves from alternative building blocks to learn which compositions of behaviour work best in each deployment environment. One of the key challenges in emergent systems is populating the library of building blocks, and particularly a set of alternative implementations of particular building blocks, which form the runtime search space of optimal behaviour. We present initial work in using a fusion of genetic improvement and genetic synthesis to automatically populate a divergent set of implementations of the same functionality, allowing emergent systems to explore new behavioural alternatives without human input. Our early results indicate this approach is able to successfully yield useful divergent implementations of building blocks which are more suited than any existing alternative for particular operating conditions.
U2 - 10.1145/3194810.3194813
DO - 10.1145/3194810.3194813
M3 - Conference contribution/Paper
SN - 9781450357531
SP - 9
EP - 16
BT - GI '18 Proceedings of the 4th International Workshop on Genetic Improvement Workshop
PB - ACM
ER -