Home > Research > Publications & Outputs > Expression of tissue type and urokinase type pl...
View graph of relations

Expression of tissue type and urokinase type plasminogen activators as well as plasminogen activator inhibitor type-1 and type-2 in human and rhesus monkey placenta

Research output: Contribution to journalJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>02/1999
<mark>Journal</mark>Journal of Anatomy
Issue number2
Volume194
Number of pages13
Pages (from-to)183-195
Publication StatusPublished
<mark>Original language</mark>English

Abstract

The distribution of mRNAs and antigens of tissue type (t) and urokinase type (u) plasminogen activators (PA) plus their corresponding inhibitors, type-1 (PAI-1) and type-2 (PAI-2) were studied in human and rhesus monkey placentae by in situ hybridisation and immunocytochemistry. Specific monkey cRNA and antibodies against human tPA, uPA, PAI-1 and PAI-2 were used as probes. The following results were obtained. (1) All the molecules tPA, uPA, PAI-1 and PAI-2 and their mRNAs were identified in the majority of the extravillous cytotrophoblast cells of the decidual layer between Rohr's and Nitabuch's striae and in cytotrophoblast cells of the chorionic plate, basal plate, intercotyledonary septae and cytotrophoblast cells of the chorionic villous tree. (2) Expression of uPA and PAI-2 was noted in villous trophoblast whereas tPA and PAI-1 were mainly concentrated where detachment from maternal tissue occurs. (3) No expression of tPA, uPA, PAI-1 and PAI-2 was observed in the basal plate endometrial stromal cells, chorionic plate connective tissue cells, septal endometrial stromal cells or villous core mesenchyme. (4) The distribution of probes observed following in situ hybridisation is generally consistent with the immunofluorescence pattern of the corresponding antigens and no significant interspecies differences were noted. It is possible that both decidual and extravillous trophoblast cells of placentae of human and rhesus monkey are capable of producing tPA, uPA, PAI-1 and PAI-2 to differing extents. Coordinated expression of these genes in the tissue may play an essential role in the maintenance of normal placentation and parturition. The differences in distribution we observed are consistent with the suggestion that coordinated expression of tPA and its inhibitor PAI-1 may play a key role in fibrinolytic activity in the early stages of placentation and separation of placenta from maternal tissue at term. On the other hand, uPA with its inhibitor PAI-2 appears mainly to play a role in degradation of trophoblast cell-associated extracellular matrix, and thus may be of greatest importance during early stages of placentation.