Accepted author manuscript, 387 KB, PDF document
Research output: Contribution to conference - Without ISBN/ISSN › Conference paper › peer-review
Research output: Contribution to conference - Without ISBN/ISSN › Conference paper › peer-review
}
TY - CONF
T1 - Extended Hypercube Models for Location Problems with Stochastic Demand
AU - Boyacı, Burak
AU - Geroliminis, Nikolas
PY - 2013/9/4
Y1 - 2013/9/4
N2 - In spatial queues, servers travel to the customers and provide service on the scene. This property makes them applicable to emergency response (e.g. ambulances, police) and on-demand transportation systems (e.g. paratransit, taxis) location problems. However, in spatial queues, there exist a different service rate for each customer-server pairs which creates Markovian models with enormous number of states and makes these approaches difficult to apply on even medium sized problems. Because of demand uncertainty, the nearest servers to a customer might not be available to intervene and this can significantly increase the service times. In this paper, we propose two new aggregate models and an approximate solution method with a dynamic programming heuristic. Results are compared with existing location models on hypothetical and real cases.
AB - In spatial queues, servers travel to the customers and provide service on the scene. This property makes them applicable to emergency response (e.g. ambulances, police) and on-demand transportation systems (e.g. paratransit, taxis) location problems. However, in spatial queues, there exist a different service rate for each customer-server pairs which creates Markovian models with enormous number of states and makes these approaches difficult to apply on even medium sized problems. Because of demand uncertainty, the nearest servers to a customer might not be available to intervene and this can significantly increase the service times. In this paper, we propose two new aggregate models and an approximate solution method with a dynamic programming heuristic. Results are compared with existing location models on hypothetical and real cases.
UR - http://transp-or.epfl.ch/heart/2013.php
M3 - Conference paper
T2 - hEART 2013 - 2nd Symposium of the European Association for Research in Transportation
Y2 - 4 September 2013 through 6 September 2013
ER -