Home > Research > Publications & Outputs > Fast and Slow Changes Constrained Spatio-tempor...

Electronic data

  • Final

    Rights statement: ©2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 2.87 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Fast and Slow Changes Constrained Spatio-temporal Subpixel Mapping

Research output: Contribution to Journal/MagazineJournal articlepeer-review

E-pub ahead of print
<mark>Journal publication date</mark>7/12/2021
<mark>Journal</mark>IEEE Transactions on Geoscience and Remote Sensing
Number of pages16
Publication StatusE-pub ahead of print
Early online date7/12/21
<mark>Original language</mark>English

Abstract

Subpixel mapping (SPM) is a technique to tackle the mixed pixel problem and produce land cover and land use (LCLU) maps at a finer spatial resolution than the original coarse data. However, uncertainty exists unavoidably in SPM, which is an ill-posed downscaling problem. Spatio-temporal SPM methods have been proposed to deal with this uncertainty, but current methods fail to explore fully the information in the time-series images, especially more rapid changes over a short-time interval. In this paper, a fast and slow changes constrained spatio-temporal subpixel mapping (FSSTSPM) method is proposed to account for fast LCLU changes over a short-time interval and slow changes over a long-time interval. Namely, both fast and slow change-based temporal constraints are proposed and incorporated simultaneously into the FSSTSPM to increase the accuracy of SPM. The proposed FSSTSPM method was validated using two synthetic datasets with various proportion errors. It was also applied to oil-spill mapping using a real PlanetScope-Sentinel-2 dataset and Amazon deforestation mapping using a real Landsat-MODIS dataset. The results demonstrate the superiority of FSSTSPM. Moreover, the advantage of FSSTSPM is more obvious with an increase in proportion errors. The concepts of the fast and slow changes, together with the derived temporal constraints, provide a new insight to enhance SPM by taking fuller advantage of the temporal information in the available time-series images.

Bibliographic note

©2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.