Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Flow velocities of the debris-covered Miyar Glacier, western Himalaya, India
AU - Das, Suresh
AU - Sharma, Milap Chand
AU - Miles, Katie E.
PY - 2022/1/2
Y1 - 2022/1/2
N2 - Spatiotemporal surface velocity measurements of the alpine valley type debris-covered Miyar Glacier of the Chandrabhaga (Chenab) basin, western Himalaya, were assessed based on the cross-correlation of Landsat images spanning nearly three decades (1992-2019). Long-term (1950-2015) temperature and precipitation trends were evaluated using Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) datasets. The mean velocity (1992-2019) of the Miyar Glacier is ∼29 m/yr, with spatial patterns revealing that the debris-covered tongue is nearly stagnant (∼5 m/yr) compared to the debris-free up-glacier zone (∼35 m/yr). The transition zone from clean to debris-covered ice in the mid-ablation area shows the highest long-term mean velocities of ∼60 m/yr during the observation period, likely resulting from a steep surface gradient and greater ice thickness than the other regions of this glacier. The slow-moving and nearly stagnant debris-covered area reveals the highest amount of surface lowering due to the expansion of supraglacial ponds. Miyar Glacier experiences summer speed-up of ∼67–80% in seasonal velocity compared to winter, interpreted as a result from enhanced basal sliding during summer months due to warmer temperatures inputting more meltwater into the subsurface drainage system. Inter-annual velocity variations are greatest in the upper glacier, with higher velocities observed more frequently in recent decades. Future work should aim to elucidate the causes of this pattern, considering the overall rising air temperature trend in the western Himalaya.
AB - Spatiotemporal surface velocity measurements of the alpine valley type debris-covered Miyar Glacier of the Chandrabhaga (Chenab) basin, western Himalaya, were assessed based on the cross-correlation of Landsat images spanning nearly three decades (1992-2019). Long-term (1950-2015) temperature and precipitation trends were evaluated using Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) datasets. The mean velocity (1992-2019) of the Miyar Glacier is ∼29 m/yr, with spatial patterns revealing that the debris-covered tongue is nearly stagnant (∼5 m/yr) compared to the debris-free up-glacier zone (∼35 m/yr). The transition zone from clean to debris-covered ice in the mid-ablation area shows the highest long-term mean velocities of ∼60 m/yr during the observation period, likely resulting from a steep surface gradient and greater ice thickness than the other regions of this glacier. The slow-moving and nearly stagnant debris-covered area reveals the highest amount of surface lowering due to the expansion of supraglacial ponds. Miyar Glacier experiences summer speed-up of ∼67–80% in seasonal velocity compared to winter, interpreted as a result from enhanced basal sliding during summer months due to warmer temperatures inputting more meltwater into the subsurface drainage system. Inter-annual velocity variations are greatest in the upper glacier, with higher velocities observed more frequently in recent decades. Future work should aim to elucidate the causes of this pattern, considering the overall rising air temperature trend in the western Himalaya.
KW - aphrodite
KW - COSI-Corr
KW - debris-covered ice
KW - Glacier velocity
KW - himalaya
KW - subglacial hydrology
U2 - 10.1080/04353676.2021.2022355
DO - 10.1080/04353676.2021.2022355
M3 - Journal article
VL - 104
SP - 11
EP - 34
JO - Geografiska Annaler: Series A, Physical Geography
JF - Geografiska Annaler: Series A, Physical Geography
IS - 1
ER -